Forgot password?
 Register account
View 1869|Reply 4

[函数] 单位圆上根式函数的范围

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-1-16 15:39 |Read mode
已知$x^2+y^2=1$,则$ \sqrt{2+x+\sqrt{3}y}+2\sqrt{2+x-\sqrt{3}y} $的范围______。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-1-16 16:34
这么简单,配个方不就好了
\[\text{原式}=\sqrt {\left( {x+\frac 12} \right)^2+\left( {y+\frac {\sqrt 3}2} \right)^2}+2\sqrt {\left( {x+\frac 12} \right)^2+\left( {y-\frac {\sqrt 3}2} \right)^2}\]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2018-1-16 18:55
Last edited by 敬畏数学 2018-1-16 19:15回复 2# kuing
很好!此法最简单。平方,三角换元等都有点啰嗦。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-1-17 09:08
回复 3# 敬畏数学


  后面还有个系数2要处理的,感觉跟三角方法差不多复杂。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2018-1-17 10:28
Last edited by 敬畏数学 2018-1-17 10:47回复 4# 游客
把完整过程写完。设$ P (x,y),A(-\dfrac{1}{2},-\dfrac{\sqrt{3}}{2}),B(-\dfrac{1}{2},\dfrac{\sqrt{3}}{2}),PA+2PB\geqslant PA+PB\geqslant AB=\sqrt{3}(P与B重合),PA+2PB= 2sin(120-A)+4sinA\leqslant 2\sqrt{7}$,(最后一步用正弦定理)。等号略。答案:$[\sqrt{3},2\sqrt{7}].$

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit