Forgot password?
 Register account
View 2774|Reply 5

[几何] 来自减压群v6的一道椭圆

[Copy link]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2018-1-27 21:12 |Read mode
v6mm131(4744*****) 19:52:07
QQ图片20180127211132.png
大家试试这个题的搞法
QQ截图20180127211152.png
解:沿坐标轴方向作“伸缩变换”将椭圆变成圆,如图,则所有直线的斜率都变为原来的一半,那么变换后依然有 $k_{AD}:k_{CB}=2:1$,作 $EH\perp AD$ 于 $H$,则有
\begin{align*}
k_{AD}:k_{CB}=2:1&\iff\tan\angle DAB=2\tan\angle CBA\\
&\iff \tan\angle DAB=2\tan\angle CDA\\
&\iff \frac{EH}{HA}=2\cdot\frac{EH}{HD}\\
&\iff HD=2HA\\
&\iff EB=2EA,
\end{align*}
故此,对于变换前,同样有 $EB=2EA$,易得 $E(-1/3,0)$,所以 $k=3$。

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2018-1-27 22:11
话说“减压群”是个什么群啊?

0

Threads

2

Posts

12

Credits

Credits
12

Show all posts

singular Posted 2018-1-27 22:49
常规思路也能做出来,需要转换一下

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

 Author| kuing Posted 2018-1-27 23:16
回复 2# shidilin

就是用来减压的[阴险]你懂的

277

Threads

546

Posts

5409

Credits

Credits
5409

Show all posts

力工 Posted 2018-1-28 09:57
回复 4# kuing

做题减压嘛,遇到难题有k神在,可以减少焦虑感。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-1-28 11:05
Last edited by hbghlyj 2025-5-15 18:16用直线AD、BC的方程,然后把C、D两点的坐标表示出来,最后D、F、C 三点共线,计算应该容易的吧?
\begin{aligned}
& \left\{\begin{array}{l}
y=m(x-1) \\
4 x^2+y^2=4
\end{array} \Rightarrow\left(m^2+4\right) x^2-2 m^2 x+\left(m^2-4\right)=0 \Rightarrow C\left(\frac{m^2-4}{m^2+4}, \frac{-8 m}{m^2+4}\right) ;\right. \\
& \left\{\begin{array}{l}
y=2 m(x+1) \\
4 x^2+y^2=4
\end{array} \Rightarrow\left(m^2+1\right) x^2+2 m^2 x+\left(m^2-1\right)=0 \Rightarrow D\left(\frac{1-m^2}{m^2+1}, \frac{4 m}{m^2+1}\right) ;\right. \\
& \Rightarrow \frac{-8 m-m^2-4}{m^2-4}=\frac{4 m-m^2-1}{1-m^2}=k . \\
& \Rightarrow\left\{\begin{array}{l}
(k+1) m^2+8 m+4-4 k=0 \\
(k-1) m^2+4 m-(k+1)=0
\end{array}\right. \\
& \Rightarrow(k-3) m^2+2 k-6=0 \Rightarrow k=3 .
\end{aligned}

Mobile version|Discuz Math Forum

2025-6-5 22:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit