Forgot password?
 Register account
View 1840|Reply 7

[数列] 数列不等式的奇怪结论

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-2-11 20:00 |Read mode
Last edited by 力工 2018-2-12 20:10数列${a_n}$满足$a_1=1,a_{n+1}=\dfrac{n^2+n+1}{n^2+n}a_n+\dfrac{1}{2^n}$,求证:$a_n<\dfrac{43\sqrt{e}}{12}-1$.
这个题显然迭加,有$a_{n+1}=\dfrac{a_1}{1\cdot 2}+\dfrac{a_2}{2\cdot 3}+\cdots +\dfrac{a_n}{n(n+1)}+2-2^{-n}$.
但不知结论中怎么与$e(伊)$勾搭上的。大咖们请讲讲吧。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-2-12 16:37
跟《撸题集》第 111 页题目 1.4.7 有点像,那题也有 e(伊)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-2-12 17:07
而且我怀疑你打错了题,按你后面的叠加式来看,递推应该和书上的那个一样才对啊。
如果真是这样的话,那这题的结论还是弱于我证出的结果。

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2018-2-12 20:04
回复 3# kuing

kuing和坛里的各位大神新年快乐!

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2018-2-12 20:11
无言中。可以还加强?

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-2-12 22:17
全然没印象了--看了luti集发现也参与过,
forum.php?mod=viewthread&tid=2376

就按kuing的方法,多计算几项,数值上还可以更精确吧,就是不晓得极限能否解出来。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-2-12 23:12
Last edited by realnumber 2018-2-12 23:23记$a_{n+1}=f(n)a_n+g(n)$
那么得
\[a_2=f(1)+g(1)\]
\[a_3=f(2)f(1)+f(2)g(1)+g(2)\]
.......
\[a_n=f(n-1)\cdots f(1)+f(n-1)\cdots f(2)g(1)+f(n-1)\cdots f(3)g(2)+\cdots +f(n-1)g(n-2)+g(n-1)\]
模仿kk的取对数后放缩得
\[a_n<e^{1-\frac{1}{n}}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{n}}+\cdots +\frac{1}{2^{n-1}}e^{\frac{1}{n}-\frac{1}{n}}\]
右边小于
\[e+\sqrt{e}(\frac{1}{2}+\frac{1}{4}+...)<e+\sqrt{e}\]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-2-13 08:56
用程序试了下$a_{12000}=3.8928874$左右

Mobile version|Discuz Math Forum

2025-5-31 11:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit