Forgot password?
 Register account
View 3177|Reply 16

[函数] 这种解法的问题出在哪?

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2013-7-6 22:04 |Read mode
Last edited by hbghlyj 2025-4-8 05:312013 湖北理第 10 题
已知 $a$ 为常数,函数 $f(x)=x(\ln x-a x)$ 有两个极值点 $x_1, x_2\left(x_1<x_2\right)$ ,则()
A.$f\left(x_1\right)>0, f\left(x_2\right)>-\frac{1}{2}$
B.$f\left(x_1\right)<0, f\left(x_2\right)<-\frac{1}{2}$
C.$f\left(x_1\right)>0, f\left(x_2\right)<-\frac{1}{2}$
D.$f\left(x_1\right)<0, f\left(x_2\right)>-\frac{1}{2}$
正确答案是 D.
我是这样做的,不知问题出在哪?
解:$f^{\prime}(x)=\ln x-2 a x+1$ ,
依题意,$f^{\prime}(x)$ 应有有两个不同的零点,
$f^{\prime \prime}(x)=\frac{1-2 a x}{x}$ ,易得 $2 a>0$ ,且 $f^{\prime}(x)$ 在 $\left(0, \frac{1}{2 a}\right)$ 上 $\nearrow$ ,在 $\left(\frac{1}{2 a},+\infty\right)$ 上 $\searrow$ ,故只需 $f^{\prime}\left(\frac{1}{2 a}\right)>0$ ,得 $\frac{1}{2 a}>1$ ,且 $x_1<\frac{1}{2 a}<x_2$ 。
又 $\ln x_1-2 a x_1+1=0, \ln x_2-2 a x_2+1=0$ ,得 $\ln x_1=2 a x_1-1, \ln x_2=2 a x_2-1$
于是 $f\left(x_1\right)=x_1\left(\ln x_1-a x_1\right)=x_1\left[\left(2 a x_1-1\right)-a x_1\right]=x_1\left(a x_1-1\right)$
因为 $a x_1<\frac{1}{2}$ ,所以 $f\left(x_1\right)<0$ ,
同理 $f\left(x_2\right)=x_1\left(a x_2-1\right)$ ,但是无法得到 $f\left(x_2\right)>-\frac{1}{2}$ ,
上述解法,对判断 $f\left(x_1\right)<0$ 没有问题,那为什么无法判断出 $f\left(x_2\right)>-\frac{1}{2}$ ?请高手指教!!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-7-6 22:59
消 a 不就好了啊

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2013-7-6 23:11
谢谢!

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2013-7-7 15:15
$x_2>1$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-7 20:32
$f(x_2)>f(1)=-a>-\dfrac12$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-7 20:50
也可以这样:$f(x_2)=x_2(ax_2-1)>ax_2-1>a\cdot\dfrac1{2a}-1=-\dfrac12$

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-7-8 09:14
这题明显是根据几年前一道全国卷高考解答题改编的……

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-8 13:19
这题明显是根据几年前一道全国卷高考解答题改编的……
Tesla35 发表于 2013-7-8 09:14

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-7-8 17:32
回复 8# 其妙
22.png
2009全国高考2卷22题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-7-8 19:30
又见 In

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-8 23:10
回复 9# Tesla35
你不贴答案,我来贴:
                     QQ图片20130629191614.jpg

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2013-7-9 10:43
ln函数,不是lu函数

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-9 20:58
ln函数,不是lu函数
第一章 发表于 2013-7-9 10:43
Te35还要来lu入呢!

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-7-10 17:05

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-10 20:42
回复 14# Tesla35
话说lu大师怎么不来本论坛啊?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-7-10 20:44
回复 15# 其妙

人教的撸大师?

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-10 21:03
嘻嘻,就是

Mobile version|Discuz Math Forum

2025-5-31 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit