Forgot password?
 Create new account
View 2443|Reply 1

[几何] 求该数值满足怎样的条件,才能垂直?

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-10-25 18:40:06 |Read mode
20130928164958156.jpg
第四题中数值满足怎样的条件,才能垂直?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-10-26 04:02:50
回复 1# 青青子衿


    11.jpg
你是想说比例关系么?
令三角形边长为a,BD=ka,CP⊥AD,求CE?

作BC中垂线AH
首先易证A、P、H、C共园,有$∠PCH=∠PAH$,易证$△ADH∽△PCD$,有$\frac{PD}{DH}=\frac{CD}{AD}$
其中$DH=(\frac{1}{2}-k)a$,$CD=(1-k)a$,$AD=\sqrt{AH^2+DH^2}=a\sqrt{\frac{3}{4}+(\frac{1}{2}-k)^2}$
于是有
\[\frac{PD}{AD}=\frac{DH·CD}{AD^2}=\frac{(\frac{1}{2}-k)(1-k)}{\frac{3}{4}+(\frac{1}{2}-k)^2}\]
\[\frac{AP}{PD}=\frac{1+k}{(1-k)(1-2k)}\]
然后梅涅劳斯定理得
\[\frac{AE}{CE}\frac{BC}{BD}\frac{PD}{AP}=1\]
可知
\[\frac{AE}{CE}=\frac{AP}{PD}\frac{BD}{BC}=\frac{k(1+k)}{(1-k)(1-2k)}\]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list