|
Last edited by wanhuihua 2018-2-23 22:42 $$
\eqalign{
& {\cal 设}x,y,z{\cal 为}{\cal 正}{\cal 数}{\cal ,}x \geqslant y \geqslant z \cr
& {\cal 求}{\cal 证}: \cr
& \frac{{x^2 y}}
{z} + \frac{{y^2 z}}
{x} + \frac{{z^2 x}}
{y} \geqslant x^2 + y^2 + z^2 \cr
& {\cal 证}{\cal 明}{\cal :} {\cal 记}x{\text{ = }}y + a,y = z + b \cr
& {\cal 上}{\cal 式} \Leftrightarrow \frac{{x^2 b}}
{z} + \frac{{z^2 a}}
{y} \geqslant \frac{{y^2 }}
{x}(a + b) \Leftrightarrow (\frac{{x^2 }}
{z} - \frac{{y^2 }}
{z} + \frac{{y^2 }}
{z} - \frac{{y^2 }}
{x})b \geqslant (\frac{{y^2 - z^2 }}
{x} + \frac{{z^2 }}
{x} - \frac{{z^2 }}
{y})a \cr
& \Leftrightarrow \frac{{ab}}
{z}(x + y) + y^2 b(\frac{{a + b}}
{{xz}}) \geqslant \frac{{ab}}
{x}(y + z) - \frac{{a^2 }}
{{xy}}z^2 ,{\cal 左}{\cal 边} \geqslant {\text{2}}ab,{\cal 右}{\cal 边} \leqslant 2ab,{\cal 显}{\cal 然}{\cal 。} \cr}
$$
这个格式还可以吧 |
|