Forgot password
 Register account
View 2316|Reply 4

[几何] 等腰三角形中的角关系与线段关系

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-2-24 16:50 |Read mode
如图,在$\triangle ABC$中,$AB=AC$,$D$底边$BC$上一点,$E$是线段$AD$上一点,且$\angle BED=2\angle CED=\angle BAC$.
求证:$BD=2 CD$.
trg.png

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2018-2-24 20:53
Last edited by abababa 2018-2-24 21:02 1.gif
设$AD$交$\triangle ABC$外接圆于$T$,作$EP$平分$\angle BET$交$BT$于$P$
由于$\angle BET=\angle BAC, \angle BTE=\angle BCA$,所以$\angle TBE=\angle CBA$
所以$\angle TBE=\angle BTE$,而$EP$平分$\angle BET$,所以$BP=TP$
由于$AB=AC$,所以$\angle PTE=\angle CTE$,而$\angle CET=\frac{\angle BET}{2}=\angle PET$,所以$\triangle CET \cong \triangle PET$
所以$TP=TC$,所以$BT=2TC$
而$\angle BTD=\angle CTD$,所以$\frac{BD}{CD}=\frac{BT}{CT}=2$,即$BD=2CD$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2018-2-24 23:51
回复 2# abababa


    继续继续,据说此题的证明有二十多种,平几中的几乎所有方法都可用上

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2018-2-25 13:31
三个共圆搞定
211.png
$ BDE $外接圆交$ AB $于$ F $,$ AFE $外接圆交$ AC $于$ G $,有\[ BFD=\angle BED=\angle BAC\riff FD\px AC\riff FB=FD \]\[ \angle AGF=\angle AEF=\angle ABC=\angle ABC\riff FG\px BC \]又\[ \angle AEG=\angle AFG=\angle ACB \]所以$ EGCD $四点共圆,$ H $为$ BC $中点,$ K $为$ BD $中点,有\[ \angle CGD=\angle CED=\angle CAH\riff FK\px AH\px DG \]故$ FGCD,FGDK $都为平行四边形,有\[ CD=FG=KD=\dfrac{1}{2}AD \]

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2018-3-17 21:11
回复 2# abababa


回复 4# 乌贼

鼓掌!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:21 GMT+8

Powered by Discuz!

Processed in 0.013707 seconds, 26 queries