Forgot password
 Register account
View 2217|Reply 6

[不等式] 二元条件最值

[Copy link]

11

Threads

24

Posts

0

Reputation

Show all posts

aaa posted 2018-3-5 20:06 |Read mode
已知 $a>1,b>2$,则 $\dfrac{(a+b)^2}{\sqrt{a^2-1}+\sqrt{b^2-4}}$ 的最小值,应该如何做呢?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2018-3-5 20:13
回复 1# aaa
先柯西不等式,再均值不等式

11

Threads

24

Posts

0

Reputation

Show all posts

original poster aaa posted 2018-3-6 07:11
回复 2# 其妙


    请问怎么用柯西?谢谢

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-3-6 14:15
回复 3# aaa

换个元,变成求
\[\frac {\bigl( \sqrt {x^2+1}+\sqrt {y^2+4} \bigr)^2}{x+y}\]
的最小值,这样看,你就会了吧?

11

Threads

24

Posts

0

Reputation

Show all posts

original poster aaa posted 2018-3-6 16:32
回复 4# kuing


    谢谢,会了

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2018-3-7 08:55
设$ x=\sqrt{a^2-1},y=\sqrt{a^2-4} $

$ \geqslant \frac{(x+1+y+2)^2}{2(x+y)}=\frac{(x+y+3)^2}{2(x+y)}=\frac{(x+y)^2+6(x+y)+9}{2(x+y)}=\frac{x+y}{2} +\frac{9}{2(x+y)}+3\geqslant 2\sqrt{\frac{9}{4}}+3=6$

等号成立,x=1,y=3,即:$ a=\sqrt{2},b=2\sqrt{2}
$

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2018-3-13 17:03
还可考虑用切线法做

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:21 GMT+8

Powered by Discuz!

Processed in 0.013759 seconds, 22 queries