Forgot password?
 Register account
View 2208|Reply 6

[不等式] 二元条件最值

[Copy link]

11

Threads

24

Posts

209

Credits

Credits
209

Show all posts

aaa Posted 2018-3-5 20:06 |Read mode
已知 $a>1,b>2$,则 $\dfrac{(a+b)^2}{\sqrt{a^2-1}+\sqrt{b^2-4}}$ 的最小值,应该如何做呢?

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2018-3-5 20:13
回复 1# aaa
先柯西不等式,再均值不等式

11

Threads

24

Posts

209

Credits

Credits
209

Show all posts

 Author| aaa Posted 2018-3-6 07:11
回复 2# 其妙


    请问怎么用柯西?谢谢

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-3-6 14:15
回复 3# aaa

换个元,变成求
\[\frac {\bigl( \sqrt {x^2+1}+\sqrt {y^2+4} \bigr)^2}{x+y}\]
的最小值,这样看,你就会了吧?

11

Threads

24

Posts

209

Credits

Credits
209

Show all posts

 Author| aaa Posted 2018-3-6 16:32
回复 4# kuing


    谢谢,会了

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-3-7 08:55
设$ x=\sqrt{a^2-1},y=\sqrt{a^2-4} $

$ \geqslant \frac{(x+1+y+2)^2}{2(x+y)}=\frac{(x+y+3)^2}{2(x+y)}=\frac{(x+y)^2+6(x+y)+9}{2(x+y)}=\frac{x+y}{2} +\frac{9}{2(x+y)}+3\geqslant 2\sqrt{\frac{9}{4}}+3=6$

等号成立,x=1,y=3,即:$ a=\sqrt{2},b=2\sqrt{2}
$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2018-3-13 17:03
还可考虑用切线法做

Mobile version|Discuz Math Forum

2025-5-31 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit