Forgot password?
 Register account
View 2298|Reply 8

[不等式] 证明$a+\dfrac1a+b+\dfrac1b+\dfrac1{ab}>\dfrac92$

[Copy link]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2018-3-12 17:43 |Read mode
已知$a>0$,$b>0$,证明:$a+\dfrac1a+b+\dfrac1b+\dfrac1{ab}>\dfrac92$
妙不可言,不明其妙,不着一字,各释其妙!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-3-12 18:19
两边+1分解即
\[(a+b+1)\left(\frac1{ab}+1\right)>\frac{11}2,\]
只需证
\[(2t+1)\left(\frac1{t^2}+1\right)>\frac{11}2,\]
其中 $t=\sqrt{ab}$,去分母整理为
\[4t(t-1)^2-t^2+2>0,\]
当 $t^2\leqslant2$ 时显然成立;当 $t^2>2$ 时
\[\LHS>4t(t-1)\bigl(\sqrt2-1\bigr)-t^2+2
>1.5t(t-1)-t^2+2=0.5t^2+2-1.5t\geqslant2t-1.5t>0,\]
即得证。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2018-3-12 18:23
回复 2# kuing

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-3-13 16:06
回复 3# 其妙

你这题得继续改呀,k随便放放就解决了,太宽了。(随便一说咯,k早已是“出神入化”了)

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2018-3-13 16:58
回复 4# isee
就是比较宽,所以你可以试一试,

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2019-10-17 09:22
Last edited by yao4015 2019-10-17 09:44这个 A-G 可以解出
\begin{align*}
2\times \dfrac{a}{2}+\dfrac{1}{a}+2\times\dfrac{b}{2}+\dfrac{1}{b}+\dfrac{1}{ab}&
> 7 \sqrt[7]{\left( \dfrac{a}{2} \right ) ^2\dfrac{1}{a}\left(\dfrac{b}{2}\right)^2\dfrac{1}{b}\dfrac{1}{ab}}\\
&=7\sqrt[7]{\dfrac{1}{2^4}}\\
&>\dfrac{9}{2}
\end{align*}

如果稍稍多一点计算, 可以算出最小值是方程 $x^3+x^2-18x-43=0$ 的正根, 约为 $4.729$.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-10-17 18:15
回复 7# yao4015


原来是含7次根号的式子大于9/2,如何判断$7\sqrt[7]8>9$这个大小的?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-10-18 02:01
回复 8# isee

`\sqrt[7]8>\sqrt[8]9=\sqrt[4]3`,再证 `7\sqrt[4]3>9` 的话四次方做乘法计算还能接受吧?

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2019-10-18 04:43
回复 8# isee

$7 \sqrt[7]{8}>9 \Longleftarrow 2^{\frac 37}>1.29>\frac 9 7$

对 $f(x)=x^{\frac 37}$ 在 $a=1$ 处做泰勒展开,取前三项

有 $f(2)>1+\frac 3 7 -\frac 6 {49}= 1+\frac {15}{49}>1+\frac {15}{50}=1.3$

显然成立。

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit