Forgot password
 Register account
View 1958|Reply 3

[不等式] 数学节快乐!积为1的不等式证明

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-3-13 21:14 |Read mode
Last edited by 力工 2018-3-14 08:12同条件两不等式:已知正数$a,b,c,abc=1$,证明:
(1)$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\geqslant a+b+c$;
(2)$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\geqslant \sqrt{3(a^2+b^2+c^2}$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-3-14 08:38
很简单啊,作代换 $a=y/x$, $b=z/y$, $c=x/z$,则:

(1)显然成立;

(2)等价于
\[x^3+y^3+z^3\geqslant\sqrt{3(x^4y^2+y^4z^2+z^4x^2)},\]
两边平方即
\[\sum x^6+2\sum x^3y^3\geqslant3\sum x^4y^2,\]
而由均值恰好有 $x^6+x^3y^3+x^3y^3\geqslant3x^4y^2$,即得证。

281

Threads

550

Posts

2

Reputation

Show all posts

original poster 力工 posted 2018-3-14 14:34
回复 2# kuing
kuing果然神!一眼看破代换来的。

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2018-3-14 15:53
是不是非齐次的都先考虑用代换齐次化?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:03 GMT+8

Powered by Discuz!

Processed in 0.022850 seconds, 23 queries