Forgot password?
 Register account
View 1180|Reply 3

一道找规律求点坐标的题

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-3-14 19:48 |Read mode
如图,个人认为点$P_i,i=1,2,3,\cdots$是按顺时针按下去的。
snap.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-3-14 21:36
回复 1# isee

用复数与向量求了个结果,不知道是否计算正确了,哈哈

$$P_n\left( \frac{2^n - \cos \frac{n\pi}3 - \frac{\sqrt 3}3\sin \frac{n\pi}3}{2^{n - 1}},\frac{\sqrt 3}3 \cdot \frac{2^n - \cos \frac{n\pi}3+ \sqrt 3 \sin \frac{n\pi}3}{2^{n - 1}} \right).$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-3-18 00:23
用复数乘法来玩这题确实不错,楼主不愿写过程,俺来写


\[w=\frac 12(\cos 60\du-i\sin 60\du),\]
将 $\vv{AB}$ 所对应的复数记为 $z(AB)$,将原点记为 $P_0$,则易知
\[z(P_0P_1)=w^{-1},\]
根据三角形的画法可知
\[z(P_kP_{k+1})=z(P_{k-1}P_k)\cdot w, \quad k=1,2,\ldots,\]
所以
\begin{align*}
z(P_0P_n)&=z(P_0P_1)+z(P_1P_2)+\cdots +z(P_{n-1}P_n)\\
&=w^{-1}+w^0+w+\cdots +w^{n-2}\\
&=w^{-1}\cdot \frac {1-w^n}{1-w},
\end{align*}
不难计算出
\[\frac {w^{-1}}{1-w}=2+\frac {2i}{\sqrt 3},\]
由什么佛定理有
\[1-w^n=1-\frac 1{2^n}\cos (n\cdot 60\du)+\frac 1{2^n}i\sin (n\cdot 60\du),\]
代入展开后即可得到楼上的结果。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2018-3-19 18:49
想到了,并执行下去

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit