Forgot password?
 Register account
View 1855|Reply 11

[数列] 数列通项的讨教

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-3-16 08:06 |Read mode
数列${a_n}$满足$a_{n+1}=a_n^2-1$,若有初始项$a_1=1$通项是可求的,如果$a_1=2$,本渣用双曲代换没有解决,求各路大神仙指导下,能不能求通项?能求怎么求?

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-3-16 10:12
最近这些题都不会啊!春天犯困。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-3-16 10:13
不能

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-3-16 11:06
有些名词都听不懂?哎。期待大师得普及。。。

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2022-4-15 14:16
Last edited by APPSYZY 2022-4-15 14:24当$a_1=2$时,$a_{n}=\left\lceil{c^{2^{n+1}}}\right\rceil$,其中常数$c=\displaystyle\lim_{n\to\infty}a_{n-1}^{2^{-n}}=1.29555\dots$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-4-15 14:26
回复 5# APPSYZY

这是怎么求出来嘀

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-4-15 17:27
回复 6# kuing

我这收藏过一篇文章专门讲这种问题的
$type a[n+1]=a[n]^2+g.pdf (1.47 MB, Downloads: 118)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-4-15 22:59
抄一下7#$\renewcommand{\mathrm}[1]{#1}$
$$
x_{n+1}=x_{n}^{2}+g_{n}, \quad n \geq 0\tag{13}
$$
with boundary conditions, and are such that
(i)$x_{n}>0$
(ii)$\left|g_{n}\right|<\frac{1}{4} x_{n}$ and $1 \leq x_{n}$ for $n \geq n_{0}$ and
(iii)$g_n$ satisfies condition (16) below
Let
$$
\mathrm{y}_{\mathrm{n}}=\log \mathrm{x}_{\mathrm{n}}, \quad \alpha_{\mathrm{n}}=\log \left(1+\frac{\mathrm{g}_{\mathrm{n}}}{\mathrm{x}_{\mathrm{n}}^{2}}\right)
$$
Then by taking logarithms of (13) we obtain
$$
\mathrm{y}_{\mathrm{n}+1}=2 \mathrm{y}_{\mathrm{n}}+\alpha_{\mathrm{n}}, \quad \mathrm{n} \geq 0 .\tag{14}
$$
For any sequence $\left\{\alpha_{n}\right\}$, the solution of (14) is (see for example [15], p. 26)
\begin{aligned}
\mathrm{y}_{\mathrm{n}}&=2^{\mathrm{n}}\left(\mathrm{y}_{0}+\frac{\alpha_{0}}{2}+\frac{\alpha_{1}}{2^{2}}+\ldots+\frac{\alpha_{\mathrm{n}-1}}{2^{\mathrm{n}}}\right)
\\
&=\mathrm{Y}_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}} \text {, }
\end{aligned}
where
$$\tag{15}\begin{gathered}
Y_{n}=2^{n} y_{0}+\sum_{i=0}^{\infty} 2^{n-1-i} \alpha_{i}
\\
r_{n}=\sum_{i=n}^{\infty} 2^{n-1-i} \alpha_{i}
\end{gathered}$$
Assuming that the $g_{n}$ are such that
$$
\left|\alpha_{n}\right| \geq\left|\alpha_{n+1}\right| \quad \text { for } n \geq n_{0}\tag{16}
$$
it follows from (15) that $\left|r_{n}\right| \leq\left|\alpha_{n}\right|$. Then
$$
x_{n}=e^{y_{n}}=e^{Y_{n}-r_n}=x_{n}e^{-r_{n}}\tag{17}
$$
where
$$\mathrm{X}_{\mathrm{n}}=\mathrm{e}^{\mathrm{Y}_n}=\mathrm{k}^{2^{\mathrm{n}}} \tag{18}$$
$$\mathrm{k}=\mathrm{x}_{0} \exp \left(\sum_{\mathrm{i}=0}^{\infty} 2^{-\mathrm{i}-1} \alpha_{i}\right)\tag{19}$$
Also
\begin{aligned}
x_{n} &=x_{n} e^{r_{n}} \leq x_{n} e^{\left|\alpha_{n}\right|} \\
& \leq x_{n}\left(1+\frac{2\left|g_{n}\right|}{x_{n}^{2}}\right) \text { for } n \geq n_{0}
\end{aligned}
using (ii), and the fact that $(1-\mathrm{u})^{-1} \leq 1+2 \mathrm{u}$ for $0 \leq \mathrm{u} \leq \frac{1}{2}$,
$$
=x_{n}+\frac{2\left|g_{n}\right|}{x_{n}}
$$
and
$$
x_{n} \geq x_{n} e^{-\left|\alpha_{n}\right|} \geq x_{n}\left(1-\frac{\left|g_{n}\right|}{x^{2}}\right)=x_{n}-\frac{\left|g_{n}\right|}{x_{n}}\text{ .}
$$
From assumption (ii), this means that
$$
\left|x_{n}-X_{n}\right|<\frac{1}{2} \text { for } n \geq n_{0}
$$
If $\mathrm{x}_{\mathrm{n}}$ is an integer, as in recurrences (1)-(3), (8) for $\mathrm{r}$ even, and (10), then the solution to the recurrence (13) is
$$
x_{n}=\text { nearest integer to } k^{2}, \text { for } n \geq n_{0}\tag{20}
$$
while if $x_{n}$ is half an odd integer, as in (8) for $r$ odd and (12), the solution is
$$
x_{n}=\left(\text { nearest integer to } \mathrm{k}^{2}+\frac{1}{2}\right)-\frac{1}{2}, \quad \text { for } n \geq n_{0}\tag{21}
$$
where $\mathrm{k}$ is given by (19).
Note that if $\mathrm{g}_{\mathrm{n}}$ is always positive, then $\alpha_{\mathrm{n}}>0, \mathrm{r}_{\mathrm{n}}>0, \mathrm{X}_{\mathrm{n}}>\mathrm{x}_{\mathrm{n}}$, and (20) may be replaced by
$$
\mathrm{x}_{\mathrm{n}}=\left[\mathrm{k}^{2^n}\right] \quad \text { for } \mathrm{n} \geq \mathrm{n}_{0}\tag{22}
$$
where $[\mathrm{a}]$ denotes the integer part of $a$. Similarly if $\mathrm{g}_{\mathrm{n}}$ is always negative then $X_{n}<x_{n}$ and
$$
x_{n}=\left[k^{2^n}\right] \quad \text { for } n \geq n_{0}\tag{23}
$$
where $[a]$ denotes the smallest integer $\geq a$.
In some cases (see below) $\mathrm{k}$ turns out to be a "known" constant (such as $\frac{1}{2}(1+\sqrt{5})$ ). But in general Eqs. (20)-(23) are not legitimate solutions to the recurrence (13), since the only way we have to calculate $\mathrm{k}$ involves knowing the terms of the sequence. Nevertheless, they accurately describe the asymptotic behavior of the sequence.

We now apply this result to the preceding examples. For all except 2.7 the proofs of properties (ii) and (iii) are by an easy induction, and are omitted.
Example 2.1.
Here $g_{n}=0, k=2$ and (20) correctly gives the solution $x_{n}=2^{2^{n}}$.
Example 2.2.
Condition (ii) holds for $\mathrm{n}_{0}=2$, and (iii) requires $\mathrm{x}_{\mathrm{n}} \leq \mathrm{x}_{\mathrm{n}+1}$, which is immediate.
From (20) $\mathrm{x}_{\mathrm{n}}=\left[\mathrm{k}^{2^n}\right]$ for $\mathrm{n} \geq 1$, where
$$
\begin{aligned}
\mathrm{k} &=\exp \left(\frac{1}{2} \log 2+\frac{1}{4} \log \frac{5}{4}+\frac{1}{8} \log \frac{26}{25}+\frac{1}{16} \log \frac{677}{676}+\cdots\right) \\
&=1.502837 \cdots
\end{aligned}
$$
The comparison of $k^{2^{n}}$ with $x_{n}$ is as follows:
$$\begin{array}{ccccccc}\mathrm{n} & 0 & 1 & 2 & 3 & 4 & 5 \\ \mathrm{x}_{\mathrm{n}} & 1 & 2 & 5 & 26 & 677 & 458330 \\ \mathrm{k}^{2^\mathrm{n}} & 1.50284 & 2.25852 & 5.10091 & 26.01924 & 677.00074 & 458330.00000\end{array}$$
Example 2.3 is similar, and $\mathrm{x}_{\mathrm{n}}=\left[\mathrm{k}^{2^{\mathrm{n}}}\right]$ where $\mathrm{k}=1.678459 \cdots$
Example 2.5.
It is found that (ii) is valid for $\mathrm{n}_{0}=1$ if $\mathrm{r}=1$ and for $\mathrm{n}_{0}=3$ if $r>3$. The solution of (5) for $r=1$ (and of example 2.4) is
$$
\mathrm{y}_{\mathrm{n}}^{(1)}=\left[\mathrm{k}^{2} \mathrm{n}+\frac{1}{2}\right], \quad \mathrm{n} \geq 0
$$
and for $r \geq 3$ is
$$
\mathrm{y}_{\mathrm{n}}^{(\mathrm{r})}=\left[\mathrm{k}^{2} \mathrm{n}+\frac{\mathrm{r}}{2}\right], \quad \mathrm{n} \geq 3
$$
where $\mathrm{k}$ is given by (19). The first few values of $\mathrm{k}$ are as follows.
$$\begin{array}{ccccc}\mathrm{r} & 1 & 3 & 4 & 5 \\ \mathrm{k} & 1.264085 & 1.526526 & 1.618034 & 1.696094\end{array}$$
For $r=4$, the value of $k$ is seen to be very close to the "golden ratio"
$$
\varphi=\frac{1}{2}(1+\sqrt{5})=1.6180339887 \cdots
$$
In fact we may take $k=\varphi$, for
$$
\begin{aligned}
&\mathrm{y}_{1}^{(4)}=5 \\
&\mathrm{y}_{\mathrm{n}+1}^{(4)}=\left(\mathrm{y}_{\mathrm{n}}^{(4)}-2\right)^{2}, \quad \mathrm{n} \geq 1
\end{aligned}
$$
is solved exactly by
$$
\mathrm{y}_{\mathrm{n}}^{(4)}=\varphi^{2^{\mathrm{n}}}+\varphi^{-2} \mathrm{n}+2, \quad \mathrm{n} \geq 1
$$
and so
$$
\mathrm{y}_{\mathrm{n}}^{(4)}=\left[\varphi^{2^{\mathrm{n}}}+2\right], \quad \mathrm{n} \geq 1
$$
(This was pointed out to us by D. E. Knuth.) So far, none of the other values of $k$ have been identified. Golomb [9] has studied the solution of (5) by a different method.
Example 2.6.
The solution to (9) is
$$
\mathrm{y}_{\mathrm{n}}=\left[\frac{1}{2}\left(1+\mathrm{k}^{2^n}\right)\right] \quad \text { for } \mathrm{n} \geq 1
$$
where $\mathrm{k}=1.618034 \cdots$, and again, as pointed out by D. E. Knuth, we may take
$$
\mathrm{k}=\varphi=\frac{1}{2}(1+\sqrt{5})
$$
since
$$
\mathrm{x}_{\mathrm{n}}=\varphi^{2^{\mathrm{n}}}+\varphi^{-2^n}, \quad \mathrm{n} \geq 0
$$
solves (10) exactly. A similar exact solution can be given for (10) for any initial value $\mathrm{x}_{0}$.
Example 2.7.
This is the only example for which (ii) and (iii) are not immediate. Bounds on $x_{n}$ and $\mathrm{y}_{\mathrm{n}}$ are first established by induction:
$$
2^{2^{n-2.1}} \leq x_{n} \leq y_{n} \leq 2^{2^{n-2}} \quad \text { for } n \geq 4
$$
then
$$
\mathrm{g}_{\mathrm{n}}=-\left(\mathrm{x}_{\mathrm{n}-2}+\frac{1}{2}\right)^{2}-\frac{3}{4}=-\mathrm{y}_{\mathrm{n}-2}^{2}-\frac{3}{4}
$$
and
$$
2^{2^{n-3.1}} \leq \mathrm{g}_{\mathrm{n}} \leq 2^{2^{\mathrm{n}-3}} \text { for } \mathrm{n} \geq 7
$$
It is now easy to show that (ii) and (iii) hold for $n \geq n_{0}=5$. The solution is
$$
\mathrm{y}_{\mathrm{n}}=\left[\mathrm{k}^{2}+\frac{1}{2}\right], \quad \mathrm{n} \geq 1
$$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-4-15 23:07
回复 7# 战巡


又是大部头节选~~~~~~

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-4-15 23:31
本楼用于编号居左

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2022-4-16 00:02
回复 7# 战巡
看这排版,是LNM系列吗?

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-4-16 00:23
回复 11# APPSYZY


不知道,我只看内容,从没关注过来源

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit