Forgot password
 Register account
View 1893|Reply 7

[数列] 求通项$a_1=3,a_{n+1}=\frac{2n-1}{2n}a_n+\frac{6n+1}{2n}$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-3-16 18:16 |Read mode
Last edited by isee 2018-3-16 18:50数列$\{a_n\}$满足$a_1=3,a_{n+1}=\frac{2n-1}{2n}a_n+\frac{6n+1}{2n}$,利用数学归纳法可以证得$a_n=2n+1$.

除了数归,还有其它方法求其通项么?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-3-16 18:57
参考《撸题集》第 854 页题目 6.5.10

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2018-3-16 19:58
参考《撸题集》第 854 页题目 6.5.10
kuing 发表于 2018-3-16 18:57
晕啊晕,就没想到$a_1-3=0$!笨了笨

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2018-3-16 20:01
参考《撸题集》第 854 页题目 6.5.10
kuing 发表于 2018-3-16 18:57
整理成阶乘,厉害的化简{:大拇指}

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2018-3-16 20:15
哦,多谢k

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-3-18 15:01
我也来凑一个闹热:数列${a_n}$的前n项和为$S_n$,且$a_1=3,2nS_{n+1}=(2n+1)S_n+3n^2+4n$,求$a_n$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-3-18 15:03
回复 6# 力工

就是《撸题集》第 854 页题目 6.5.10 的另一种写法罢了……

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-3-21 14:26
回复 7# kuing
谢谢酷酷小锅

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:27 GMT+8

Powered by Discuz!

Processed in 0.012472 seconds, 23 queries