Forgot password?
 Register account
View 1873|Reply 7

[数列] 求通项$a_1=3,a_{n+1}=\frac{2n-1}{2n}a_n+\frac{6n+1}{2n}$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-3-16 18:16 |Read mode
Last edited by isee 2018-3-16 18:50数列$\{a_n\}$满足$a_1=3,a_{n+1}=\frac{2n-1}{2n}a_n+\frac{6n+1}{2n}$,利用数学归纳法可以证得$a_n=2n+1$.

除了数归,还有其它方法求其通项么?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-3-16 18:57
参考《撸题集》第 854 页题目 6.5.10

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-3-16 19:58
参考《撸题集》第 854 页题目 6.5.10
kuing 发表于 2018-3-16 18:57
晕啊晕,就没想到$a_1-3=0$!笨了笨

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-3-16 20:01
参考《撸题集》第 854 页题目 6.5.10
kuing 发表于 2018-3-16 18:57
整理成阶乘,厉害的化简{:大拇指}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-3-16 20:15
哦,多谢k

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-3-18 15:01
我也来凑一个闹热:数列${a_n}$的前n项和为$S_n$,且$a_1=3,2nS_{n+1}=(2n+1)S_n+3n^2+4n$,求$a_n$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-3-18 15:03
回复 6# 力工

就是《撸题集》第 854 页题目 6.5.10 的另一种写法罢了……

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-3-21 14:26
回复 7# kuing
谢谢酷酷小锅

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit