Forgot password?
 Register account
View 1661|Reply 1

[数列] 一个数列问题

[Copy link]

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2018-3-17 23:55 |Read mode
题目: 已知数列$\{a_n\}$ 满足 $a_1=\frac{1}{2}$,$a_{n+1}=\mathrm{e}^{a_n-1}(n \in \mathbb{N}_*)$,其中$\mathrm{e}$是自然对数的底数.
(1) 证明: $a_{n+1}>a_n(n \in \mathbb{N}^{*})$
(2) 设$b_n=1-a_n$,是否存在实数$M>0$,使得$b_1+b_2+\cdots+b_n \leqslant M$对任意$n \in \mathbb{N}^{*}$成立?若存在,求出$M$的一个值;若不存在,请说明理由.

解答:
(1) 略.
(2) 因为$b_1=\frac{1}{2}$,递推式
\[ b_{n+1}=1-\mathrm{e}^{-b_n} \]
由不等式
\[ \mathrm{e}^x \geqslant 1+x \]
得(注意$b_n$恒正,所以没有等号了)
\[ b_{n+1}>1-\frac{1}{1+b_n} \]
利用这个不等式,归纳法即可证明
\[ b_n \geqslant \frac{1}{n+1} \]
剩下的调和级数就没有人不会了吧,不会就翻竞赛书。
数学暗恋者,程序员,喜欢古典文学/历史,个人主页: https://zhcosin.coding.me/

0

Threads

1

Posts

5

Credits

Credits
5

Show all posts

Alephs520 Posted 2018-3-18 00:06

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit