Forgot password
 Register account
View 2066|Reply 8

[数列] 一个数列问题

[Copy link]

7

Threads

8

Posts

0

Reputation

Show all posts

yhrenwoxing posted 2018-3-19 23:01 |Read mode
已知数列{a_n }满足,a_1=1,a _n a_n+1=2^n,若a_2+a_4+a_6+...+a_2018=2^x+y,其中-2018<y<0.求x+y

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2018-3-20 12:49
回复 1# yhrenwoxing
既然要用 latex,就打像样点嘛,凡是上标或下标超过一个字符,就要用一对花括号给套住,OK?
已知数列$\{a_n\}$满足:$a_1=1$,$a_na_{n+1}=2^n$,若$a_2+a_4+\cdot+a_{2018}=2^x+y$,其中$-2018<y<0$,求$x+y$.
是这样吗,也不知道是$2^x+y$还是$2^{x+y}$.

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2018-3-20 18:24
回复 2# zhcosin
还不如手写拍照上传,
不过初学者,写成这个也差不多了

7

Threads

8

Posts

0

Reputation

Show all posts

original poster yhrenwoxing posted 2018-3-20 23:10
Photo_0320_1a.jpg

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2018-3-21 02:49
回复 1# yhrenwoxing


易证$a_2=2$
\[\frac{a_{2n+2}}{a_{2n}}=\frac{a_{2n+1}a_{2n+2}}{a_{2n}a_{2n+1}}=\frac{2^{2n+1}}{2^{2n}}=2\]
于是
\[a_{2n}=2^n\]
\[\sum_{k=1}^{1009}a_{2k}=2^{1010}-2\]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2018-3-21 09:12
回复 5# 战巡
题做得很漂亮,但看下你做题时间有点晕啊!

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-3-21 14:24
回复 6# 敬畏数学

战神在米国!

7

Threads

8

Posts

0

Reputation

Show all posts

original poster yhrenwoxing posted 2018-3-21 23:15
回复 5# 战巡
Photo_0321_1a (1).jpg

7

Threads

8

Posts

0

Reputation

Show all posts

original poster yhrenwoxing posted 2018-3-22 20:30
回复 8# yhrenwoxing

最后要解一个不定方程 在怎么做了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:31 GMT+8

Powered by Discuz!

Processed in 0.023381 seconds, 25 queries