Forgot password?
 Register account
View 1801|Reply 3

[不等式] 双二元不等式

[Copy link]

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted 2018-3-26 20:13 |Read mode
$$
\eqalign{
  & {\cal 设}{\cal 非}{\cal 负}{\cal 数}{\text{a}},b,c,d{\cal 满}{\cal 足}{\text{a}} + b + c + d = k {\cal 求}:  \cr
  & \frac{a}
{{1 + b^2 }} + \frac{b}
{{1 + a^2 }} + \frac{c}
{{1 + d^2 }} + \frac{d}
{{1 + c^2 }}{\cal 的}{\cal 最}{\cal 小}{\cal 值} \cr}
$$

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted 2018-3-26 20:14
回复 1# wanhuihua

用k表示

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-3-27 01:34
这个没什么难度吧

令 $x=a+b$, $y=c+d$,由
\[\frac a{1+b^2}+\frac b{1+a^2}-\frac {4(a+b)}{4+(a+b)^2}=\frac {(a-b)^2(a+b)(a^2+3ab+b^2+1)}{(1+a^2)(1+b^2)\bigl(4+(a+b)^2\bigr)},\]
得到
\[\frac a{1+b^2}+\frac b{1+a^2}\geqslant \frac {4x}{4+x^2},\]
后两项同理,故
\[\text{原式}\geqslant \frac {4x}{4+x^2}+\frac {4y}{4+y^2},\]

\[\frac {4x}{4+x^2}+\frac {4y}{4+y^2}-\frac{4(x+y)}{4+(x+y)^2}=\frac {4xy(x+y)(x^2+xy+y^2+12)}{(4+x^2)(4+y^2)\bigl(4+(x+y)^2\bigr)},\]
所以
\[\text{原式}\geqslant\frac{4k}{4+k^2},\]
当 $a=b=0$, $c=d=k/2$ 或者反过来时取等。

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted 2018-3-27 08:57
回复 3# kuing


    url.cn/5L4EuLw,以前做的,大家看看,思路差不多,计算量小点

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit