Forgot password
 Register account
View 1789|Reply 5

[数列] 数列通项

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2018-3-27 11:07 |Read mode
数列通项.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-3-27 11:30
看《数学空间》2011年第2期 P29 例3.1.2

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2018-3-27 11:47
回复 2# kuing


    在哪下载啊,人教论坛好像下不了了。 现在下到了,谢谢!

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2018-3-28 13:19
未命名.PNG

0

Threads

1

Posts

0

Reputation

Show all posts

sowhat posted 2018-4-11 18:45
令$a_n=\frac{1}{b_n}+b_n(b_0=2),则a_n^2=b_n^2+2+\frac{1}{b_n^2}$
所以$a_{n+1}=a_n^2-2=b_n^2+\frac{1}{b_n^2}$
即$b_{n+1}+\frac{1}{b_{n+1}}=b_n^2+\frac{1}{b_n^2}$
令$n=0,有b_{1}+\frac{1}{b_{1}}=b_0^2+\frac{1}{b_0^2}$
两边平方,$b_0^4+\frac{1}{b_0^4}=b_{1}^2+\frac{1}{b_{1}^2}=b_{2}+\frac{1}{b_{2}}$
以此类推,有$b_0^{2^n}+\frac{1}{b_0^{2^n}}=b_n+\frac{1}{b_n}$
综上有:$a_n=b_n+\frac{1}{b_n}=b_0^{2^n}+\frac{1}{b_0^{2^n}}=2^{2^n}+\frac{1}{2^{2^n}}$

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-4-11 20:24
令$a_n=\frac{1}{b_n}+b_n(b_0=2),则a_n^2=b_n^2+2+\frac{1}{b_n^2}$
所以$a_{n+1}=a_n^2-2=b_n^2+\frac{1} ...
sowhat 发表于 2018-4-11 18:45
又来个隐形好手,欢迎欢迎

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 21:07 GMT+8

Powered by Discuz!

Processed in 0.013413 seconds, 25 queries