Forgot password?
 Register account
View 1694|Reply 3

[不等式] $a_i\leqslant a_{i+1}+a_{i+2}$,求$\sum_{i=0}^na_i$的最小值

[Copy link]

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

dahool Posted 2018-3-31 08:36 |Read mode
Last edited by dahool 2018-3-31 14:03设$a_0,a_1,a_2,\cdots,a_n\geqslant0$,且$a_0=1,  a_i\leqslant a_{i+1}+a_{i+2},  i\in\{0,1,2,\cdots,n-2\}$,其中$n\geqslant2$,求$\sum_{i=0}^na_i$的最小值.

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-3-31 08:51
Last edited by dahool 2018-3-31 19:40我大概想到和斐波那契数列有关,并且简单求了一下,但是不知道是不是最小的,所以没办法证明其最小.
即构造个斐波那契数列$\{b_n\}$,$b_n=\frac{1}{\sqrt{5}}\cdot[(\frac{(1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n],n\geqslant0$那么下面这列数满足题目的不等式要求:$$\frac{b_n}{b_n},\frac{b_{n-1}}{b_n},\frac{b_{n-2}}{b_n},\cdots,\frac{b_1}{b_n},\frac{b_0}{b_n}$$而它们的和为$$S_{n+1}=\frac{b_{n+2}-1}{b_n}=a_0+a_1+\cdots+a_n$$请问大神这题怎么处理?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-3-31 12:24
回复 1# dahool

那个 i 是不是应该从 0 开始?否则 a1, a2, ... 可以全取 0

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-3-31 14:03
回复 3# kuing

啊,是的,我修改下

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit