|
kuing
Posted 2018-4-8 13:50
下面证明:对于任意 `x`, `y\geqslant1`,恒有
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^x+\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^y\geqslant x^x+y^y.\]
因为
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^x=\left( x-\frac{(x-y)y^y}{x^x+y^y} \right)^x=x^x\left( 1-\frac{(x-y)y^y}{x(x^x+y^y)} \right)^x,\]
故由勃撸力不等式得
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^x\geqslant x^x\left( 1-\frac{(x-y)y^y}{x^x+y^y} \right)=x^x-\frac{(x-y)x^xy^y}{x^x+y^y},\]
同理
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^y\geqslant y^y-\frac{(y-x)x^xy^y}{x^x+y^y},\]
两式相加即得证。 |
|