Forgot password?
 Register account
View 1933|Reply 6

[函数] │f(x)+f(x+m)-2│+│f(x)-f(x+m)│≥2

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2018-4-14 23:33 |Read mode
Last edited by realnumber 2018-4-14 23:43已知定义域为R的偶函数$\abs{x}\le 1,f(x)=2\cos{\frac{\pi x}{2}};\abs{x}>1,f(x)=x^2-1$,
若$\abs{f(x)+f(x+m)-2}+\abs{f(x)-f(x+m)}\ge 2,m>0$对任意实数x都成立,则m的最小值为____.

令x=-0.5m,则可得$m=1$或$m\ge2\sqrt{3}$,再令$x=-\frac{2}{3}$,可排除m=1.
以下验证$m\ge2\sqrt{3}$成立.
因为$m\ge2\sqrt{3}$,则$\abs{x}\ge\sqrt{3}$或$\abs{x+m}\ge\sqrt{3}$,即
$f(x)\ge2$或$f(x+m)\ge 2$,又$f(x)\ge0$,则$\abs{f(x)+f(x+m)-2}\ge0$,
即已知条件化为$f(x)+f(x+m)+\abs{f(x)-f(x+m)}\ge 4$,
若$f(x)\ge f(x+m)$,则条件即为$f(x)\ge 2$成立;若$f(x)\le f(x+m)$也成立.

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-4-15 07:35
回复 1# realnumber
选择题?这题看着吓人。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2018-4-15 07:36
回复 2# 力工


    填空,我的解答似乎复杂,不晓得有没简洁明快的

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-4-17 09:07
未命名.PNG

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-4-17 19:13
回复 3# realnumber

图象法吧,相对简洁一点。(题出得很妙啊)
与4楼游客基本相同,不过,我作$\abs{f(x)-1}$,然后左移m个单位。

abs.png

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-4-18 09:06
|a|+|b|=MAX{|a+b|,|a-b|},见套路:forum.php?mod=viewthread&tid=4368&highlight=

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-4-18 09:12
回复 4# 游客
。从提问到最后解决都太棒了!

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit