Forgot password?
 Register account
View 1867|Reply 3

[不等式] 嵌套根式取整

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2018-4-18 20:41 |Read mode

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-4-18 22:13
因为
\begin{align*}
3&=\sqrt {(2+1)^2}\\
&=\sqrt {2^2+\sqrt {(2^2+1)^2}}\\
&=\sqrt {2^2+\sqrt {2^4+\sqrt {(2^3+1)^2}}}\\
&=\sqrt {2^2+\sqrt {2^4+\sqrt {2^6+\sqrt {(2^4+1)^2}}}}\\
&=\cdots \\
&=\sqrt {2^2+\sqrt {2^4+\sqrt {2^6+\cdots +\sqrt {2^{2(n-1)}+\sqrt {(2^n+1)^2}}}}},
\end{align*}
由此显然有
\[\sqrt {2+\sqrt {3+\sqrt {4+\cdots +\sqrt n}}}<3,\]
所以
\[\sqrt {1+\sqrt {2+\sqrt {3+\cdots +\sqrt n}}}<\sqrt {1+3}=2,\]
二次根号尚且小于 `2`,三次根号就更小了,即 `S<2`,又显然 `S>1`,所以 `[S]=1`。

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2018-4-18 22:24
回复 2# kuing

赞!

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-4-19 11:20
第一个“显然”是需要理解的,要求两式项数有限且相等,不能是无穷。

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit