|
战巡
Posted 2018-4-27 12:37
Last edited by 战巡 2018-4-28 00:45回复 1# 力工
\[\frac{b_n}{b_{n+2}}=(1-\frac{2}{n+3})^{\frac{3}{4}(n+3)}(n+1)^{-\frac{3}{2}}<e^{-\frac{3}{2}}(n+1)^{-\frac{3}{2}}\]
\[\sum_{n=1}^\infty\frac{b_n}{b_{n+2}}<\sum_{n=1}^\infty e^{-\frac{3}{2}}(n+1)^{-\frac{3}{2}}=e^{-\frac{3}{2}}[\zeta(\frac{3}{2})-1]=0.35977<\frac{1}{\sqrt{6}}\]
实际的极限在$0.283$左右,很可能无法求出精确值 |
|