Forgot password
 Register account
View 1813|Reply 4

[不等式] 数列不等式(温三)

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-4-27 07:29 |Read mode
温州三月模拟题22:显然是道拼凑的题,觉得第三问可以让结论更精确些,如何放缩呢? 加强加强.png
(1)$a_n=n+1$;
(2)先猜(必要)后证(充分).
(3)裂项。

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2018-4-27 12:37
Last edited by 战巡 2018-4-28 00:45回复 1# 力工


\[\frac{b_n}{b_{n+2}}=(1-\frac{2}{n+3})^{\frac{3}{4}(n+3)}(n+1)^{-\frac{3}{2}}<e^{-\frac{3}{2}}(n+1)^{-\frac{3}{2}}\]
\[\sum_{n=1}^\infty\frac{b_n}{b_{n+2}}<\sum_{n=1}^\infty e^{-\frac{3}{2}}(n+1)^{-\frac{3}{2}}=e^{-\frac{3}{2}}[\zeta(\frac{3}{2})-1]=0.35977<\frac{1}{\sqrt{6}}\]

实际的极限在$0.283$左右,很可能无法求出精确值

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-4-27 13:20
这么难看的题,扔掉吧

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2018-4-27 17:36
凑巧试卷里做到了
(2)只需要$a_1$代入,就可以解得 $ -\frac{8}{3}\le t \le 0$且t不等于-2.对n=2,3,4用二项式定理展开就可以保留一部分。
(3)利用导数的逆运算,得到怎么列项,
在特定条件下有$f'(n) \le f(n-1)-f(n)$,本题凑巧可以,当然要证明过的。又,没有2楼来得精确。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-4-27 18:35
回复 4# realnumber


战巡的解法,怕只能够是教师参考一下背景或者实质吧。总之,学习。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:51 GMT+8

Powered by Discuz!

Processed in 0.013435 seconds, 26 queries