Forgot password?
 Register account
View 2107|Reply 4

[不等式] │asinx+b│的最大值

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2018-5-10 22:16 |Read mode
存在实数a,b,c,对任意x有$\abs{a\cos^2{x}+b\sin{x}+c}\le 2 $恒成立,求$\abs{a\sin{x}+b}$的最大值.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-10 23:50
还是熟悉的套路啊……

显然
\[\max_{x\inR}\abs{a\sin x+b}=\max\{\abs{a+b},\abs{a-b}\},\]
设 `f(x)=a\cos^2x+b\sin x+c`,有
\begin{align*}
\abs{a+b}&=\left| f(0)-f\left( -\frac\pi2 \right) \right|\leqslant\abs{f(0)}+\left| f\left( -\frac\pi2 \right) \right|\leqslant4,\\
\abs{a-b}&=\left| f(0)-f\left( \frac\pi2 \right) \right|\leqslant\abs{f(0)}+\left| f\left( \frac\pi2 \right) \right|\leqslant4,
\end{align*}
从而
\[\max_{x\inR}\abs{a\sin x+b}\leqslant4,\]
易见当 `a=4`, `b=0`, `c=-2` 时满足题意且使上式取等,所以所求最大值就是 `4`。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-5-11 08:41
a=±4,b=0.

未命名.PNG

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2018-5-12 16:35
果然是那绝对值的取点放缩套路

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-5-12 20:58
套路。

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit