Forgot password?
 Register account
View 2499|Reply 14

[函数] 函数数列不等式

[Copy link]

3

Threads

1

Posts

21

Credits

Credits
21

Show all posts

依然饭太稀 Posted 2018-5-11 18:32 |Read mode
QQ截图20180511193140.jpg

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-5-11 18:59
并没有算,不过,我猜是这个
$$\ln x <\frac12\left(x-\frac1x\right),x>1.$$
如果猜对了,则第(2),直接放缩
$$\require{cancel}\bcancel{\frac{\ln n}{(2n-1)(2n+1)}<\frac{n^2-1}{(2n-1)(2n)(2n+1)}<\frac {n^2}{(2n-1)(2n)(2n+1)}}.$$

受阻,忽略。

==============
(1) 动笔算了下,验证了直觉是对的:$$a\in \bigg[\frac 12,+\infty\bigg).$$
(2) 除了楼下kuing 在6楼的先裂项,还有没针对此题相对简单一点点的方法呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-11 19:53
回复 2# isee

我也并没有算,不过,我猜你这个是行不通的。
首先用 lnx<x-1 肯定不行,因为这样放缩后分子一次分母二次,而调和级数发散,所以肯定不行。
而改用 lnx<1/2(x-1/x) 虽然更强,但当 x 很大时,它的“主部”仍然是一次,所以如无意外还是不行的。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-5-11 20:09
回复 3# kuing

嘿嘿,我以为第(2)问的分子与分母约分后,能裂项,现在发现分子还有个n,没约完,这个方向应该是受阻了。

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2018-5-11 21:32
Last edited by Infinity 2018-5-12 15:51回复 1# 依然饭太稀
如果用积分的几何意义,可以一步到位。因为\[\frac{\ln n}{(2n-1)(2n+1)}\require{cancel}\bcancel{<}\frac{\ln n}{4n^2}\]故只需证明\[\require{cancel}\bcancel{\sum_{n\geqslant 2}\frac{\ln n}{n^2}<1}\]因为$f(x)=\frac{\ln x}{x^2}$在$[2,+\infty)$上单调递减且为(下)凸函数,故x轴从2到n各单位长度为底的矩形面积之和小于1到n积分面积之和,即\[\sum_{n\geqslant 2}\frac{\ln n}{n^2}<1-\frac{1}{n}-\frac{\ln n}{n}<1\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-11 21:38
回复 4# isee

lnx<1/2(x-1/x) 直接用不行,但先裂项重组再用却是可以的。
\begin{align*}
\LHS&=\sum_{k=2}^n\frac{\ln k}2\left( \frac1{2k-1}-\frac1{2k+1} \right)\\
&=\frac{\ln2}6+\sum_{k=3}^n\frac1{2k-1}\left( \frac{\ln k}2-\frac{\ln(k-1)}2 \right)-\frac1{2n+1}\cdot\frac{\ln n}2\\
&=\frac{\ln2}6+\frac12\sum_{k=3}^n\frac1{2k-1}\ln\frac k{k-1}-\frac1{2n+1}\cdot\frac{\ln n}2\\
&<\frac{\ln2}6+\frac14\sum_{k=3}^n\frac1{2k-1}\left( \frac k{k-1}-\frac{k-1}k \right)\\
&=\frac{\ln2}6+\frac14\sum_{k=3}^n\frac1{k(k-1)}\\
&=\frac{\ln2}6+\frac14\left( \frac12-\frac1n \right)\\
&<\frac{\ln2}6+\frac18,
\end{align*}
故只需证明 `\ln2<3/4`,显然成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-11 22:37
回复 5# Infinity

第一步就反了啊

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-5-11 23:17
回复 6# kuing

这个证第(2)问,哈哈,且比较原命题强。

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2018-5-12 15:59
回复 7# kuing

嗯,上面计算有误,应该是:
当$n=2$时,$\ln 2<\ln e=1<\frac{3\times 5}{4}$也即$\frac{\ln 2}{3\times 5}<\frac{1}{4}$成立。
考虑$n\geqslant 3$时,有以下不等式成立\[\frac{\ln n}{(2n-1)(2n+1)}\leqslant \frac{36}{35}\frac{\ln n}{4n^2}\]因此只需证明\[\sum_{n\geqslant 3}\frac{\ln n}{n^2}<\frac{35}{36}\]用5楼类几何方法可知\[\sum_{n\geqslant 3}\frac{\ln n}{n^2}<\int_2^n\frac{\ln x}{x^2}\mathrm d x=\frac{1+\ln 2}{2}-\frac{\ln n}{n}-\frac 1n\]由于$\ln 2\approx0.693$,故\[\frac{1+\ln 2}{2}<\frac{35}{36}\]综上可知,原不等式成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-12 16:22
回复 9# Infinity

还是有问题,n>=3 时是有那个不等式成立,但左边第一项依然是 ln2/(3*5) 啊,只需证明的应为
\[\frac {\ln 2}{3\cdot 5}+\frac {36}{35}\sum_{n\geqslant 3}\frac {\ln n}{4n^2}<\frac 14,\]即\[\sum_{n\geqslant 3}\frac {\ln n}{n^2}<\frac {35}{36}-\frac {7\ln 2}{27},\]

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2018-5-12 17:46
嗯嗯,是的,马虎了~

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-5-12 20:57
能证明$$\frac{\ln x}{x^2}\leqslant \frac 1{2e},$$用得上否?

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2018-5-13 18:02
回复 12# isee

太松了,右端至少不能是常数。否则左端有限项求和总能让右端足够大。

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2018-5-15 16:09
好像前段时间做过,眼熟。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2018-5-16 07:12
又见$\sum\frac{\ln(n)}{n^2}$,又可以把这个帖子拉出来了
forum.php?mod=viewthread&tid=3980&highlight=

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit