Forgot password?
 Register account
View 1981|Reply 7

[不等式] 三元分式不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-5-12 09:47 |Read mode
Last edited by lemondian 2018-5-12 17:09已知$a,b,c>0$,求证:$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\geqslant \dfrac{a+b+c}{1+2abc}$.

是不是要改为:$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\geqslant \dfrac{a+b+c}{1+3abc}$.才好?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-12 09:54
题目有没有抄错?现在这个不等式虽然成立但太弱且取不了等号

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-5-12 10:02
回复 2# kuing


    没错,原题如此。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-12 10:04
回复 3# lemondian

那就没意思了。

首先容易证明
\[\frac ab+\frac bc+\frac ca\geqslant \frac {a+b+c}{\sqrt[3]{abc}},\]
于是只需证 `\sqrt[3]{abc}\leqslant 1+2abc`,这显然成立而且取不了等。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-5-12 10:09
回复 4# kuing
哦,
我猜,出题人是不是想看看,此题能不能推广到n元吧?可能没考虑到取等

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-5-12 16:59
我想是不是将原不等式的分母的数字改为3才对头?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-12 18:05
无语……

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-5-13 18:36
已知:$a,b,c>0$,求证:
(1)$\dfrac{1}{2}(\dfrac{a}{b}+\dfrac{b}{a})\geqslant \dfrac{a+b}{1+ab}$;
(2)$\dfrac{1}{3}(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})\geqslant \dfrac{a+b+c}{2+abc}$;
(3)推广呢?

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit