Forgot password?
 Register account
View 1181|Reply 8

函数

[Copy link]

14

Threads

29

Posts

224

Credits

Credits
224

Show all posts

依然饭特稀 Posted 2018-5-19 08:16 |Read mode
31273868971AA04D0EBD062E6E5517BD.png

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-5-19 21:19
QQ图片20180519211256.png
第2小题,f(x1)+f(x2)=-5即$3=(e^{x_1}-x_1)+(e^{x_2}-x_2)$
当-1<x1<0时,$1<e^{x_1}-x_1<1+\frac{1}{e}$,得到$2-\frac{1}{e}<e^{x_2}-x_2<2$
从图中大致可得到$1<x_2<1.2$(注意,不是取值范围,只是个粗糙的估计),这样x1-2x2>-4+1/e就成立了。

接下来,试着把这个思路过程写得更严密点,引入切线,割线来处理函数不等式。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-5-19 21:29
假设$x_2\ge 1.2$
则$e^{x_2}-x_2=ee^{x_2-1}-x_2>e(1+x_2-1)-x_2>1.7\times 1.2>2$与$e^{x_2}-x_2<2$矛盾
这样$x_2<1.2$
如此$x_1-2x_2>-1-2.4>-4+1/e$

14

Threads

29

Posts

224

Credits

Credits
224

Show all posts

 Author| 依然饭特稀 Posted 2018-5-19 22:25
我搞的前两行是一样的,x2的范围弄的复杂了,想直接奔着结果去。。。。

14

Threads

29

Posts

224

Credits

Credits
224

Show all posts

 Author| 依然饭特稀 Posted 2018-5-19 22:26
我搞的前两行是一样的,x2的范围弄的复杂了,想直接奔着结果去。。。。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-5-20 23:21
特别对“单峰”函数,函数就夹在切线和割线之间,可以缩小定义域提高精度
例如:$f(x)=e^x-\frac{5}{6}x^2-2x$,当$-1\le x \le 1$时,求证:$e-\frac{17}{6}\le f(x) \le \frac{5}{3}$
当$-1\le  x \le 0$时,$e^x\le  (1-\frac{1}{e})x+1$,只需要证$(1-\frac{1}{e})x+1\le \frac{5}{6}x^2+2x+\frac{5}{3}$,又$-\frac{1}{e}x\le -\frac{2}{5}x$
只需证$0\le \frac{5}{6}x^2+\frac{7}{5}x+\frac{2}{3},-1\le x\le 0$,计算下判别式就 可以说明成立 QQ截图201805201101141er.png

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-5-21 08:16
回复 2# realnumber
这真是一个蛮好的思路,就是考试时,没法画图,如何得到x2<1.2是困难的哩。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-5-21 10:26
QQ截图20180521102605.jpg

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-5-21 17:26
也许要大胆猜,由要证明的去猜,毕竟比较宽松

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit