Forgot password?
 Register account
View 1606|Reply 3

[几何] 明明是题选择题,正方体一内切球

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-5-23 21:06 |Read mode
点P是棱长为2的正方体ABCD-A1B1C1D1的内切球O球面上一动点,点M为B1C1的中点,
若满足DP⊥BM,则B1P与面CDP所成角的正切值的最小值是(  C )
A. 1/6  B.$\frac{\sqrt{5}}{3}$  C.$\frac{\sqrt{14}-2}{5}$   D.$\frac{\sqrt{14}}{7}$


明明是题选择题,大动干戈了,建立空间直角坐标系O(0,0,0)P(x,y,z),B1(1,1,-1),$x^2+y^2+z^2=1$,求出面CDP的法向量$\vv{BM}$与B1P所成角的正弦值$\abs{\cos{<\vv{n},\vv{B_1P}>}}$,...

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-23 22:45
传统方法也不复杂啊,如图:

QQ截图20180523224251.png

点 `P` 的轨迹为内切球与面 `CDEF` 的交线,即图中那个圆,延长 `GH` 与圆的交点就是取最小值时的点 `P`。

由于那个圆与 `EF` 相切于中点,由此可得其半径 `r=2/\sqrt 5`,又易知 `GB_1=r`, `GF=r/2`,所以
\[GH=\sqrt {1+(r+GF)^2}=\sqrt {1+\frac 94r^2},\]
所求值为
\[\frac {GB_1}{GH+r}=\frac 1{\sqrt {\frac 1{r^2}+\frac 94}+1}=\frac {\sqrt {14}-2}5.\]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2018-5-24 05:32
谢谢k,表示现在更倾向于用坐标

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-5-24 15:50
主要是计算太复杂,还要用那么多直角三角形相似。

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit