Forgot password
 Register account
View 1712|Reply 1

[数列] 数列不等式和

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-5-31 23:00 |Read mode
最近不知怎么了,回生?
(2).jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-5-31 23:21
将第一个递推代入第二个递推得 `a_{n+1}b_{n+1}=a_nb_n`,显然 `b_1=1`,所以 `a_nb_n=a_1b_1=4`,代回去得
\[a_{n+1}=\frac{a_n}2+\frac2{a_n},\]
然后就是常规的不动点套路了
\begin{align*}
a_{n+1}-2&=\frac{(a_n-2)^2}{2a_n},\\
a_{n+1}+2&=\frac{(a_n+2)^2}{2a_n},
\end{align*}
相除得
\[\frac{a_{n+1}-2}{a_{n+1}+2}=\left( \frac{a_n-2}{a_n+2} \right)^2,\]
通项就可以搞出来了,剩下估计就不难的了。

当然或许不必用到具体通项,可以考虑直接对递推式玩放缩,比如两边平方略掉一些项之类的,反正都是常规手法,就不撸了……

PS、这排版真差,建议码一下。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:02 GMT+8

Powered by Discuz!

Processed in 0.023914 seconds, 25 queries