Forgot password?
 Register account
View 1668|Reply 2

[几何] 2018年北京卷理科第14题 求离心率

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-6-7 22:15 |Read mode
Last edited by hbghlyj 2025-4-6 22:07圆锥曲线,离心率,平面几何加基础计算。

已知椭圆$M:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ ,双曲线$N:\frac{x^2}{m^2} - \frac{y^2}{n^2} = 1$ .若双曲线$N$的两条渐近线与椭圆$M$的四个交点及椭圆$M$的两个焦点恰为一个正六边形的顶点,则椭圆$M$的离心率为__________;双曲线$N$的离心率为__________.

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2018-6-7 22:57
Last edited by hbghlyj 2025-4-6 22:11

\[ e=\dfrac{2a}{2c}=\dfrac{PF_1+PF_2}{F_1F_2}=\dfrac{1+\sqrt{3}}{2}\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-6-7 23:15
回复 2# 乌贼


平面几何为载体的压轴,可想而知现在的几何已经完全没地位了。

再来口算双曲线$$e^2=1+\frac {n^2}{m^2}.$$

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit