Forgot password?
 Register account
View 2249|Reply 7

[数列] 2018年江苏卷第20题 数列+绝对值+不等式

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-6-8 23:23 |Read mode
Last edited by isee 2018-6-21 15:07江苏卷的压轴题,这个应该有挑战性


设$\{a_n\}$是首项为${a_1}$,公差为$d$的等差数列,$\{b_n\}$是首项为${b_1}$,公比为$q$的等比数列.
(1)设${a_1}=0,{b_1}=1,q=2$,若$|a_n-b_n|\le b_1$对$n=1,2,3,4$均成立,求$d$的取值范围;
(2)若$a_1=b_1>0,m\in N^*,q\in (1,\sqrt[m]{2}]$,证明:存在$d\in R$,使得$|a_n-b_n|\le b_1$对$n=2,3,\cdots ,m+1$均成立,并求$d$的取值范围(用$b_1,m,q$表示).
20(2).png

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2018-6-9 23:02
这样处理下,两边除以$b_1$,即$\abs{\frac{a_n}{b_1}-\frac{b_n}{b_1}}\le1$---①
点$(n,\frac{b_n}{b_1})$在$y=q^{x-1}$上,点$(n,\frac{a_n}{b_1})$在直线$y-1=\frac{d}{b_1}(x-1)$上
要符合距离差不大于1的条件,必要条件是n=m+1时①要满足,这样直线要夹在AC,AD间,即$\frac{q^m-2}{m}\le \frac{d}{b_1}\le\frac{q^m}{m}$此时可以证明$y=q^{x-1},x\in [1,m+1]$导数小于AD斜率,即对任意$x\in [1,m+1]$,①都成立.
QQ截图20180609224621aaa.png

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2018-6-30 16:19
这道题的(2),新东方给出的解答比较简洁:
2018江苏高考数学20题  02   182_180608105408L2LtAfhtY8t7xR5j.JPG

不过这样解答是否正确呢?
q的最大值与t有关,但这里q被当成常量求导的。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2018-7-1 11:00
回复 3# 走走看看

上面的求法有点突兀,但也有点道理。

参考答案不是采用直接求导的方式。
左边用比差法得出最大值,右边采用比商法求最小值。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2018-7-1 21:47
回复 4# 走走看看

不知为何几何画板不能画出以下两个函数的全部图象:
临时图.PNG

本来想看看x∈(0,1/16)的图象。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2018-7-1 22:11
回复 5# 走走看看


    前者可推导出  在定义区间上,值域为 (2,4);后者为(4,+∞)。
    就是想用图象验证一下。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-7-1 22:31
回复 5# 走走看看

它已经画了,只是你没看见。不信你画 f(x/16) 试试

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2018-7-2 06:59
回复 7# kuing

谢谢!没想到藏在里面了。

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit