Forgot password?
 Register account
View 1921|Reply 3

[不等式] 不等式来袭!

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-7-13 21:31 |Read mode
已知非负数$a,b,c,d$的和为$1$,证明:(1)$a^2+b^2+c^2+d^2+12\sqrt{abcd}\leqslant 1$.
(2)$\dfrac{a}{4b^2+1}+\dfrac{b}{4c^2+1}+\dfrac{c}{4d^2+1}+\dfrac{d}{4a^2+1}\geqslant \dfrac{3}{4}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-7-14 14:37
第(1)都不会就该打PP了;

第(2)可作为菊部切线法的范例:由
\[\frac1{4b^2+1}-(1-b)=\frac{b(2b-1)^2}{4b^2+1}\geqslant0,\]

\[\sum\frac a{4b^2+1}\geqslant\sum(a-ab)=1-(a+c)(b+d)\geqslant1-\left( \frac{\sum a}2 \right)^2=\frac34.\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-7-14 15:24
回复 2# kuing

擦,那早开花了~~

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-7-14 17:37
Last edited by hbghlyj 2025-3-14 00:09(1)利用$ (a+b+c+d)^2=1 $,展开就直接得到不等式了。第二个局部切线法有难度啊。

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit