Forgot password
 Register account
View 1939|Reply 7

[数列] 前2018项和的末位数字

[Copy link]

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2018-7-17 10:12 |Read mode
Last edited by longzaifei 2018-7-17 10:21已知$n∈N∗ $,记 $ n^{{n+1}^{n+2}}$的末位数字为 $a_n$,则数列$ {a_n}$ 的前 2018 项和的末位数字是

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-7-17 10:18
回复 1# longzaifei

指数要加{},即n^{n+1},如果是乘法,直接n(n+1)(n+2)

48

Threads

77

Posts

0

Reputation

Show all posts

original poster longzaifei posted 2018-7-17 10:21
[b]回复 2# [i]isee[/igapdong

搞定

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-7-17 10:36
回复 3# longzaifei

幂上幂,啧啧

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-7-17 12:43
应该写成 `n^{(n+1)^{n+2}}`

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2018-7-17 19:47
$\begin{cases}
a_n\equiv 0\pmod{2},n\equiv 0\pmod{2}\\
a_n\equiv 1\pmod{2},n\equiv 1\pmod{2}
\end{cases}$

$\begin{cases}
a_n\equiv n^{{0+1}^{0+2}}\equiv n\pmod{5},n\equiv 0\pmod{4}\\
a_n\equiv n^{{1+1}^{1+2}}\equiv n^8\equiv n^4\pmod{5},n\equiv 1\pmod{4}\\
a_n\equiv n^{{2+1}^{0+2}}\equiv n^9\equiv n\pmod{5},n\equiv 2\pmod{4}\\
a_n\equiv n^{{3+1}^{1+2}}\equiv n^{64}\equiv n^4\pmod{5},n\equiv 3\pmod{4}\\
\end{cases}$

$\begin{cases}
a_n\equiv 5(0)-4(n)\equiv 6n\pmod{10},n\equiv 0\pmod{2}\\
a_n\equiv 5(1)-4(n^4)\equiv 6n^4+5\pmod{10},n\equiv 1\pmod{2}\\
\end{cases}$

$a_n\equiv 0,1,2,1,4,5,6,1,8,1\pmod{10},n\equiv 0,1,2,3,4,5,6,7,8,9\pmod{10}$

$\displaystyle \sum_{n=1}^{2018}a_n\equiv 201\times 9+8\equiv 7\pmod{10}$

48

Threads

77

Posts

0

Reputation

Show all posts

original poster longzaifei posted 2018-7-24 11:23
回复 6# tommywong
能力有限,没看懂!不过还是谢谢您的解答

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2018-8-10 08:03
算了下前几个,特殊到一般的思路
$a_1=a_{11}=a_{21}=...=1$
$a_2=a_{12}=a_{22}=...=2$
$a_3=a_{13}=a_{23}=...=1$
.....不晓得后面是否会有变化,自己算吧

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:18 GMT+8

Powered by Discuz!

Processed in 0.013323 seconds, 23 queries