Forgot password?
 Register account
View 2021|Reply 7

[数列] 递增数列问题

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-7-30 08:57 |Read mode
Last edited by 力工 2018-7-30 15:45已知正整数$a_1,a_2,\cdots ,a_{2018}$满足$a_1<a_2<\cdots <a_{2018}$,对于$i=1,2,\cdots ,2018$,记$b_i$为$a_1,a_2,\cdots ,a_{2018}$中不超过$i$的正整数的个数,求$\dfrac{(a_1+a_2+\cdots +a_{2018})+(b_1+b_2+\cdots +b_{a_{2018}})}{a_{2018}+1}$的值.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-7-30 14:49
你有没有抄错题?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2018-7-30 15:42
回复 2# kuing
哇神,果然是错了 。我仔细对了两遍。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-7-30 18:16
“对于`i=1,2,\cdots ,2018`”是不是还没写对

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2018-7-30 19:42
回复 4# kuing

这是原题中的,我照着来的。

这是原题中的,我照着来的。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2018-7-30 22:02
$\displaystyle \sum_{i=1}^{a_{2018}} b_i=\sum_{i=1}^{2017} i(a_{i+1}-a_i)+2018=2018+2017a_{2018}-\sum_{i=1}^{2017} a_i$

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2018-7-31 09:03
回复 6# tommywong
怎么解释?我用调整法试了一下,脑力有限,乱了。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2018-7-31 19:36
咁畫先睇到o架,唔畫睇唔撚到o架

a2018.png
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

Mobile version|Discuz Math Forum

2025-5-31 11:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit