Forgot password?
 Register account
View 1868|Reply 4

[不等式] 把貌似不对称的代数式恒等变换成对称的

[Copy link]

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2018-8-3 19:32 |Read mode
下面这个代数式看起来关于 \(a, b, c \) 是不对称的:
\( b (a + c) (a - c)^2 (a c + b^2 ) + a c (b^2 - c^2) ( b^2 - a^2)\)

但是实际上,上式关于 \(a, b, c \) 是对称的,并且对称公式有许多。我先摆出一个:

\( 9 a^2 b^2 c^2+a b c (a+b+c)^3-7 a b c (a b+a c+b c) (a+b+c)+(a b+a c+b c)^3\)

请大家再提出其它的恒等变换式子。最好给出变换过程。

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

 Author| TSC999 Posted 2018-8-3 19:35
上面那个对称式是通过 mathematica 软件得到的,指令如下:

SymmetricReduction[
b (a + c) (a - c)^2 (a c + b^2) + a c (b^2 - c^2) (b^2 - a^2), {a, b,
   c}]

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

 Author| TSC999 Posted 2018-8-3 19:48
我这里还有几个,先不摆出来,为的是抛砖引玉。看看各位高手都有什么方法?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-8-3 21:14
wocao!SymmetricReduction!第一次见这个命令,太好了,这个我真的很有需要,以前一直都手动操作!

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2018-8-6 11:00
给你个 Schur 形式
$\sum_{cyc} b^2c^2(a-b)(a-c)+abc(a+b+c)\sum_{cyc} (a-b)(a-c)$.

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit