Forgot password?
 Register account
View 1882|Reply 1

[不等式] 两个组合数不等式

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-7 00:57 |Read mode
\[
\begin{array}{cc}
\displaystyle\binom{2n}{n}\!\!\!&\ge&\displaystyle2^n\left(1+\frac{1}{\sqrt[n-1]{n}}\right)^{n-1} \\
\\
\displaystyle\binom{2n+1}{n}\!\!\!&\ge&\displaystyle2^n\left(1+\frac{1}{\sqrt[n]{n+1}}\right)^{n}
\end{array}
\quad\quad n\in\mathbb{N_+}
\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-8-7 02:02
你的代码:
  1. \[
  2. \begin{array}{cc}
  3. \displaystyle\binom{2n}{n}\!\!\!&\ge&\displaystyle2^n\left(1+\frac{1}{\sqrt[n-1]{n}}\right)^{n-1} \\
  4. \\
  5. \displaystyle\binom{2n+1}{n}\!\!\!&\ge&\displaystyle2^n\left(1+\frac{1}{\sqrt[n]{n+1}}\right)^{n}
  6. \end{array}
  7. \quad\quad n\in\mathbb{N_+}
  8. \]
Copy the Code
可以简化成:
  1. \[
  2. \begin{aligned}
  3. \binom{2n}{n} & \ge 2^n\left(1+\frac{1}{\sqrt[n-1]{n}}\right)^{n-1} \\
  4. \binom{2n+1}{n} & \ge 2^n\left(1+\frac{1}{\sqrt[n]{n+1}}\right)^{n}
  5. \end{aligned}
  6. \qquad n\in\mathbb N_+
  7. \]
Copy the Code
效果:
\[
\begin{aligned}
\binom{2n}{n} & \ge 2^n\left(1+\frac{1}{\sqrt[n-1]{n}}\right)^{n-1} \\
\binom{2n+1}{n} & \ge 2^n\left(1+\frac{1}{\sqrt[n]{n+1}}\right)^{n}
\end{aligned}
\qquad n\in\mathbb N_+
\]

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit