Forgot password?
 Register account
View 1290|Reply 2

[组合] $(1+x)^{2017}$展开式中,系数为偶数的有多少项?

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2018-8-14 12:53 |Read mode
RT,开始我猜的是2018-4=2014,结果用电脑算了下结果是1890,系数为奇数的项呈现一定的规律(第1+32k,2+32k项的样子吧)。
要怎么分析这道题呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-8-14 12:59
又玩组合数奇偶性……forum.php?mod=viewthread&tid=163

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2018-8-14 19:40
en.wikipedia.org/wiki/Kummer's_theorem

$v_p(\binom{n}{k})=\frac{1}{p-1}(S_p(k)+S_p(n-k)-S_p(n))$

也就是在p進制時k加上n-k的進位次數

要求$\binom{n}{k}$不整除p即k加上n-k時不進位

設$n=\sum_i n_i p^i$,不整除p的$\binom{n}{k}$有$\prod_i (1+n_i)$個

p=2時就有$2^{S(n)}$個

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit