|
kuing
Posted 2018-8-19 23:22
有了,设三角形三边为 `y+z`, `z+x`, `x+y`,其中 `x`, `y`, `z>0`,则由余弦定理易得
\[\cos A=1-\frac{2yz}{(x+y)(x+z)},\]
故由CS有
\begin{align*}
\sum\frac1{2-\cos A}&=\sum\frac1{1+\frac{2yz}{(x+y)(x+z)}}\\
&=\sum\frac{(xy+xz)^2}{(xy+xz)^2\left( 1+\frac{2yz}{(x+y)(x+z)} \right)}\\
&\geqslant\frac{4(xy+yz+zx)^2}{\sum(xy+xz)^2\left( 1+\frac{2yz}{(x+y)(x+z)} \right)}\\
&=\frac{4(xy+yz+zx)^2}{\sum(xy+xz)^2+\frac{2xyz}{(x+y)(y+z)(z+x)}\sum x(y+z)^3},
\end{align*}
故只需证
\begin{gather*}
2(xy+yz+zx)^2\geqslant\sum(xy+xz)^2+\frac{2xyz}{(x+y)(y+z)(z+x)}\sum x(y+z)^3,\\
2xyz(x+y+z)\geqslant\frac{2xyz}{(x+y)(y+z)(z+x)}\sum x(y+z)^3,\\
(x+y+z)(x+y)(y+z)(z+x)\geqslant\sum x(y+z)^3,
\end{gather*}
展开后正好配方为
\[\sum x^2(y-z)^2\geqslant0,\]
即得证。 |
|