Forgot password?
 Register account
View 2889|Reply 10

[不等式] 轮换不等式

[Copy link]

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

dahool Posted 2018-9-4 11:28 |Read mode
若$x,y,z>0$,且$x+y+z=3$,证明:$$x^2+y^2+z^2\leqslant \frac{y}{x}+\frac{z}{y}+\frac{x}{z}$$

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-9-4 11:43
参见《撸题集》P947~948 题目 6.10.21

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-9-4 11:47
回复 2# 色k

我就猜到了应该能有,搜索不了呀,我正在查看
哈哈,能否教下怎么搜索?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-9-4 12:30
如果我说我是通过搜索两个句号找到的,你信不信

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-9-4 13:26
回复 4# 色k


看见那两个句号了

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2018-9-16 23:40
回复  色k


看见那两个句号了
dahool 发表于 2018-9-4 13:26
哪里来的神马句号?

2

Threads

3

Posts

26

Credits

Credits
26

Show all posts

zht13140 Posted 2021-9-28 16:07

求助三元不等式

已知$x,y,x\inR^+,x+y+z=3$,求证:$$x^2+y^2+z^2\leqslant \frac{y}{x}+\frac{z}{y}+\frac{x}{z}$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-29 09:07
回复 4# zht13140

看《撸题集》P.947~948 题目 6.10.21

2

Threads

3

Posts

26

Credits

Credits
26

Show all posts

zht13140 Posted 2021-9-29 10:18
Last edited by zht13140 2021-9-29 10:32犹如一个智障一般。
一方面,没想明白怎么利用$(x+y+z)^3\geqslant \frac{27}{4}(x^2y+y^2z+z^2x+xyz)$来证明$x^2+y^2+z^2\leqslant \frac{y}{x}+\frac{z}{y}+\frac{x}{z}$
另一方面,$(x+y+z)^3\geqslant \frac{27}{4}(x^2y+y^2z+z^2x+xyz)$,代入$x=\frac{a}{b},y=\frac{b}{c},z=\frac{c}{a}$,无法得到$108abc(a^2+b^b+c^2)^3\leqslant(a+b+c)^6(a^3+b^3+c^3+abc)$
疯了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-29 14:17
回复 7# zht13140

pxchg1200 的意思是:对 `(x+y+z)^3\geqslant\frac{27}{4}(x^2y+y^2z+z^2x+xyz)` 代入 `x = a/b`, `y = b/c`, `z = c/a` 得到
\[\left( \frac ab+\frac bc+\frac ca \right)^3\geqslant\frac{27}4\left( \frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}+1 \right),\] 于是要证明 `\frac ab+\frac bc+\frac ca\geqslant\frac{9(a^2+b^2+c^2)}{(a+b+c)^2}` 就只需证
\[\frac{27}4\left( \frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}+1 \right)\geqslant\left( \frac{9(a^2+b^2+c^2)}{(a+b+c)^2} \right)^3,\]此式去分母之后即 `108abc(a^2+b^b+c^2)^3\leqslant(a+b+c)^6(a^3+b^3+c^3+abc)`(题目 6.10.21)。

2

Threads

3

Posts

26

Credits

Credits
26

Show all posts

zht13140 Posted 2021-9-29 14:28
回复 8# kuing

我的理解有问题啊,谢谢
   

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit