|
任何内接于球体的平行六面体都必须是直角平行六面体
caltech physics set4 solution
First, we show that any parallelepiped inscribed in a sphere must be a right parallelepiped. We use a sphere of unit radius without lack of generality. We first choose $\vec{r}=(x, y, z)$, the position of one of the vertices. It must hold that
\begin{equation}
x^2+y^2+z^2=1\label1
\end{equation}
Now, let the vectors $\vec{A}, \vec{B}$, and $\vec{C}$ define the directions to the nearest three vertices from $\vec{R}$, placing those vertices at $\vec{R}+\vec{A}, \vec{R}+\vec{B}$, and $\vec{R}+\vec{C}$. Then we also have the equations
\begin{align}
& \left(x+x_A\right)^2+\left(y+y_A\right)^2+\left(z+z_A\right)^2=1 \label{RA}\\
& \left(x+x_B\right)^2+\left(y+y_B\right)^2+\left(z+z_B\right)^2=1 \label{RB}\\
& \left(x+x_C\right)^2+\left(y+y_C\right)^2+\left(z+z_C\right)^2=1
\end{align}
Since the sphere defines a full 2-dimensional surface, there is an infinite number of possible choices of $\vec{A}, \vec{B}$, and $\vec{C}$ that stay on the sphere. But now the remainder of the vertices are fully determined: they are at $\vec{R}+\vec{A}+\vec{B}, \vec{R}+\vec{A}+\vec{C}, \vec{R}+\vec{B}+\vec{C}$, and $\vec{R}+\vec{A}+\vec{B}+\vec{C}$. We thus have four more equations that must be satisfied:
\begin{align}
\left(x+x_A+x_B\right)^2+\left(y+y_A+y_B\right)^2+\left(z+z_A+z_B\right)^2=1\label5 \\
\left(x+x_A+x_C\right)^2+\left(y+y_A+y_C\right)^2+\left(z+z_A+z_C\right)^2=1\label6\\
\left(x+x_B+x_C\right)^2+\left(y+y_B+y_C\right)^2+\left(z+z_B+z_C\right)^2=1\label7\\
\left(x+x_A+x_B+x_C\right)^2+\left(y+y_A+y_B+y_C\right)^2+\left(z+z_A+z_B+z_C\right)^2=1\label8
\end{align}
Now, if one subtracts \eqref{RA}\eqref{RB} from \eqref{5} and adds \eqref{1}, and does similarly for the equations \eqref{6}\eqref{7}, one obtains\begin{array}{l}2 x_{A} x_{B}+2 y_{A} y_{B}+2 z_{A} z_{B}=0 \\ 2 x_{A} x_{C}+2 y_{A} y_{C}+2 z_{A} z_{C}=0 \\ 2 x_{B} x_{C}+2 y_{B} y_{C}+2 z_{B} z_{C}=0\end{array}These are just dot-product equations, indicating that $\vec A, \vec B,$ and $\vec C$ must be mutually perpendicular. Hence, the parallelepiped must be a right parallelepiped. |
|