Forgot password?
 Register account
View 4000|Reply 8

[几何] 求矩形内接三角形面积

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-9-12 18:53 |Read mode
如图,$ABCD$为矩形,$\triangle ABE$,$\triangle CEF$,$\triangle ADF$的面积分别为5,4,3,求$\triangle AEF$的面积.
rectr.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2018-9-13 00:56
回复 1# isee

硬来就行了
令$BE=a,CE=b, CF=x,DF=y$
\[\begin{cases}
(x+y)a=10...(1)\\
bx=6...(2)\\
(a+b)y=8...(3)
\end{cases}\]
由(3)得到$by=8-ay$,于是
\[S_{ABCD}=(x+y)(a+b)=(x+y)a+bx+by=10+6+8-ay=24-ay\]
又从$(1)\times(3)$得到
\[(x+y)(a+b)ay=80\]
这两条可得出
\[S_{ABCD}=24-\frac{80}{S_{ABCD}}\]
\[S_{ABCD}=20\]
\[S_{△AEF}=20-3-4-5=8\]

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-9-13 09:03
(S-8)(S-10)=6S,  s=S-12.

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2018-9-13 14:00
特殊值法
211.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-9-13 18:38
回复 4# 乌贼

这个特殊值实在是太巧合了,因为计算后的结果表明 E点正好是边的中点

1

Threads

55

Posts

329

Credits

Credits
329

Show all posts

huing Posted 2018-9-14 11:37
仿射变换下面积比不变,故存在一个满足题设面积关系的特殊矩形——正方形。设正方形的边长AB=AD=a,则有
BE=10/a, DF=8/a, EC=a-10/a, FC=a-8/a
由EC*FC=6得关于a的方程   (a-10/a)(a-8/a)=6
解得 a^2=20或4(舍),所以S△AEF=20-(3+4+5)=8

1

Threads

55

Posts

329

Credits

Credits
329

Show all posts

huing Posted 2018-9-14 11:41
(S-8)(S-10)=6S,  s=S-12.
游客 发表于 2018-9-13 09:03
这个简明。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-9-14 13:51
回复 6# huing

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2018-9-16 23:34
我以前解过这道题(不知道发在那个论坛,好像是好推?),现在不会解了

Mobile version|Discuz Math Forum

2025-5-31 11:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit