Forgot password
 Register account
View 1833|Reply 2

[不等式] 证明一道不等式

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2018-9-28 08:54 |Read mode
a,b,c>0,$proof:\frac{a(a^2+bc)}{b+c}+\frac{b(b^2+ac)}{a+c}+\frac{c(c^2+ba)}{b+a}\geqslant ab+bc+ca$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-9-28 10:10
简单题\begin{align*}
\LHS-\RHS&=\sum\left( \frac{a(a^2+bc)}{b+c}-\frac{a(b+c)}2 \right)\\
&=\frac12\sum\frac{a(2a^2-b^2-c^2)}{b+c}\\
&=\frac12\sum\left( \frac{a(a^2-b^2)}{b+c}+\frac{b(b^2-a^2)}{a+c} \right)\\
&=\frac12\sum\frac{(a-b)^2(a+b)(a+b+c)}{(b+c)(c+a)}
\end{align*}

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-9-28 10:13
最后如果通分展开,写起来还更漂亮
\[=\frac{(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2)(a+b+c)}{(a+b)(b+c)(c+a)}.\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:10 GMT+8

Powered by Discuz!

Processed in 0.012875 seconds, 22 queries