Forgot password
 Register account
View 1824|Reply 1

[不等式] 不等!不等!!又见构造

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-10-12 11:04 |Read mode

只能构造?求大神,想知道来源和高妙的方法!

只能构造?求大神,想知道来源和高妙的方法!
求大神,想知道改编来源,与高妙大法!只能构造吗?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-10-12 13:41
我不知道你说的“构造”是什么意思?
这题非常简单,就用简单的均值即可,完全没难度,什么来源不来源的根本无关重要。
首先对分母用均值 `\sqrt{1+a_i}=2\sqrt{2(1+a_i)}/\sqrt8\leqslant(3+a_i)/\sqrt8`,所以只需证
\[\sum\frac{a_i^2}{3+a_{i+1}}\geqslant\frac n4,\]再由均值
\[\frac{a_i^2}{3+a_{i+1}}+\frac{3+a_{i+1}}{16}\geqslant\frac{a_i}2,\]得
\[\sum\frac{a_i^2}{3+a_{i+1}}\geqslant\sum\left( \frac{a_i}2-\frac{3+a_{i+1}}{16} \right)=\frac7{16}\sum a_i-\frac3{16}n\geqslant\frac n4.\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:28 GMT+8

Powered by Discuz!

Processed in 0.016973 seconds, 25 queries