Forgot password?
 Register account
View 2072|Reply 10

[数列] 一个群里的数列不等式

[Copy link]

10

Threads

4

Posts

72

Credits

Credits
72

Show all posts

2009 Posted 2018-10-14 11:50 |Read mode
Last edited by hbghlyj 2025-5-4 07:58\[\sum_{i=2}^n\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{i-1}-\frac{1}{i}\right) \frac{1}{2^{i-1}}<1\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-10-14 12:23
用一下Abel,发现这个和是可以求粗来嘀……

记原不等式左边为 `f`,则
\[f=\sum_{i=2}^n\left( 1+\frac12+\frac13+\cdots+\frac1{i-1} \right)\frac1{2^{i-1}}-\sum_{i=2}^n\frac1{i\cdot2^{i-1}},\]

\begin{align*}
a_i&=\frac1{2^{i-1}},\\
b_i&=1+\frac12+\frac13+\cdots+\frac1{i-1},\\
S_i&=a_2+a_3+\cdots+a_i=1-\frac1{2^{i-1}},
\end{align*}

\begin{align*}
f&=\sum_{i=2}^na_ib_i-\sum_{i=2}^n\frac1{i\cdot2^{i-1}}\\
&=\sum_{i=2}^nS_i(b_i-b_{i+1})+S_nb_{n+1}-\sum_{i=2}^n\frac1{i\cdot2^{i-1}}\\
&=\sum_{i=2}^n\left( 1-\frac1{2^{i-1}} \right)\left( -\frac1i \right)+\left( 1-\frac1{2^{n-1}} \right)b_{n+1}-\sum_{i=2}^n\frac1{i\cdot2^{i-1}}\\
&=\sum_{i=2}^n\left( -\frac1i \right)+\left( 1-\frac1{2^{n-1}} \right)b_{n+1}\\
&=1-b_{n+1}+\left( 1-\frac1{2^{n-1}} \right)b_{n+1}\\
&=1-\frac1{2^{n-1}}b_{n+1},
\end{align*}
也就是说有等式
\[\sum_{i=2}^n\left( 1+\frac12+\frac13+\cdots+\frac1{i-1}-\frac1i \right)\frac1{2^{i-1}}=1-\frac1{2^{n-1}}\left( 1+\frac12+\frac13+\cdots+\frac1n \right).\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-10-14 15:52
回复 3# kuing


阿贝尔恒等式?积分的吧

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-10-14 15:56
回复 4# isee

积分的我不了解,我用的是求和的那个。
不过积分其实也是一种求和,估计也是本质相同的公式。

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2018-10-20 09:43
回复 4# isee


    阿贝尔求和是离散形式的分部积分法,分部积分法是连续形式的阿贝尔求和。

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2018-10-20 19:36
Last edited by hbghlyj 2025-5-4 09:58\begin{aligned}
& \text {令 } a_n=\left(1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n-1}-\frac{1}{n}\right) \cdot \frac{1}{2^{n-1}}, n \geq 2 \\
& \text {则 } 2 a_{n+1}-a_n=\frac{1}{n} \cdot \frac{1}{2^{n-2}}-\frac{1}{n+1} \cdot \frac{1}{2^{n-1}} \\
& \therefore \sum_{i=2}^n\left(2 a_{i+1}-a_i\right)=\frac{1}{2}-\frac{1}{n+1} \cdot \frac{1}{2^{n-1}} \\
& \text {而 } \sum_{i=2}^n\left(2 a_{i+1}-a_i\right)=\sum_{i=2}^n a_i+2 a_{n+1}-2 a_2 \\
& =\sum_{i=2}^n a_i+2 a_{n+1}-\frac{1}{2} \\
& \therefore \sum_{i=2}^n a_i=1-2 a_{n+1}-\frac{1}{n+1} \cdot \frac{1}{2^{n-1}}<1
\end{aligned}

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-10-21 00:10
回复 7# 睡神

这个好

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2018-10-21 00:31
Last edited by 战巡 2018-10-21 00:44哦,这不群里那个题么...
那个高数解法是我给的,当时正准备睡觉,被他缠着问,根本没空研究,就直接正面强攻3分钟拿下来了
\[\sum_{i=2}^\infty(\sum_{k=1}^{i-1}\frac{1}{k}-\frac{1}{i})\frac{1}{2^{i-1}}\]
\[=\sum_{i=2}^\infty(\frac{1}{2^{i-1}}\sum_{k=1}^{i-1}\frac{1}{k})-\sum_{i=2}^\infty\frac{1}{i·2^{i-1}}\]
\[=\sum_{i=2}^\infty(\frac{1}{2^{i-1}}\int_0^1\frac{x^{i-1}-1}{x-1}dx)-(2\ln(2)-1)\]
\[=\int_0^1\frac{1}{x-1}(\sum_{i=2}^\infty[(\frac{x}{2})^{i-1}-\frac{1}{2^{i-1}}]dx-(2\ln(2)-1)\]
\[=\int_0^1\frac{2}{2-x}dx-(2\ln(2)-1)=1\]

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-10-21 00:38
回复 9# 战巡

强攻也不错
PS、第一行打漏了 1/k

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2018-10-21 00:43
太高深莫测了…膜拜

10

Threads

4

Posts

72

Credits

Credits
72

Show all posts

 Author| 2009 Posted 2018-10-24 10:31
解法都很精彩!谢谢大家!!

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit