Forgot password?
 Register account
View 3812|Reply 15

[不等式] 2013卓越联盟自主招生试题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2013-10-29 23:01 |Read mode
设$x>0,$
$(1)$证明:$e^{x}>1+x+\dfrac{1}{2}x^2;$
$(2)$证明:$e^{x}=1+x+\dfrac{1}{2}x^2e^y,$证明:$0<x<y.$

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2013-10-29 23:03
不好意思,打错了,第2问要证得是$0<y<x$

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2013-10-29 23:24
第一问,若用$y=e^x$在$x=0$处的Tayloy公式直接秒了

不这,这些东东忘记得差不多了,还是等懂来解决

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-29 23:31
回复 3# isee

不用 taylor 也行,求两次导即可。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-29 23:43
第二问直接解出
\[y=\ln\bigl(2(e^x-1-x)\bigr)-2\ln x,\]

\[x-y=x+2\ln x-\ln\bigl(2(e^x-1-x)\bigr)=f(x),\]
求导得
\[f'(x)=\frac{2e^x-2-2x-x^2}{x(e^x-1-x)},\]
正好由第一问得……略

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-29 23:44
回复 5# kuing

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-10-30 00:59
回复 3# isee


第二问泰勒一样秒啊.......
\[f(x)=f(0)+f'(0)x+\frac{f''(\xi)x^2}{2},\xi\in(0,x)\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-30 01:02
回复 7# 战巡


PS、代码是 \xi

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-10-30 02:15
这题也作自招题?那么简单有神马好玩啊…
第一问:令$f(x)=\dfrac{1+x+\dfrac{1}{2}x^2}{e^x},x>0$
第二问:令$g(x)=\dfrac{(1-\dfrac{1}{2}x^2)e^x}{1+x},x>0$
除了不懂,就是装懂

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-30 13:26
都很妙!

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2013-10-30 14:37
2013年广东理数,最后一题与第一问最后化简后,差不多
kkkkuingggg.haotui.com/thread-1638-1-1.html

也是偶 和 睡神 一样,也是用的商,比较方便

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-31 23:10
Last edited by hbghlyj 2025-4-8 05:30解(1)令 $f(x)=e^x-1-x-\frac{1}{2} x^2, f^{\prime}(x)=e^x-1-x, f^{\prime \prime}(x)=e^x-1>0(x>0)$ , $f^{\prime}(x)$ 单调递增且 $f^{\prime}(0)=0$ ,所以 $f^{\prime}(x)>0$ ;从而 $f(x)$ 单调递增且 $f(0)=0$ ,所以 $f(x)>0$ ,得证 $x>0$ 时 $e^x>1+x+\frac{1}{2} x^2$ .
(2)由(1)知 $e^x=1+x+\frac{1}{2} x^2 e^y>1+x+\frac{1}{2} x^2, e^y>1, y>0$ ;
\[
e^y-e^x=\frac{\left(2-x^2\right) e^x-2-2 x}{x^2}, \text { 令 } g(x)=\left(2-x^2\right) e^x-2-2 x \text {, }
\]
$g^{\prime}(x)=\left(2-2 x-x^2\right) e^x-2, \quad g^{\prime \prime}(x)=\left(-4 x-x^2\right) e^x<0 \quad(x>0), \quad g^{\prime}(x)$ 单调递减且 $g^{\prime}(0)=0$ ,所以 $g^{\prime}(x)<0, g(x)$ 单调递减且 $g(0)=0$ ,所以 $g(x)<0$ ,从而 $e^y<e^x$ 得 $y<x$. 综上 $0<y<x$ .

7

Threads

52

Posts

393

Credits

Credits
393

Show all posts

icesheep Posted 2013-10-31 23:40
\[{e^x} > 1\]
\[\int\limits_0^x {{e^x}{\text{d}}x}  > \int\limits_0^x {{\text{d}}x} \]
\[{e^x} - 1 > x\]
\[{e^x} > 1 + x\]
\[\int\limits_0^x {{e^x}{\text{d}}x}  > \int\limits_0^x {\left( {1 + x} \right){\text{d}}x} \]
\[{e^x} - 1 > x + \frac{{{x^2}}}{2}\]
\[{e^x} > 1 + x + \frac{{{x^2}}}{2}\]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-31 23:53
回复 13# icesheep
反其道而行之!

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-11-1 01:23
回复 13# icesheep


噗...积分变量和上下限变量一样......经典错误啊....

7

Threads

52

Posts

393

Credits

Credits
393

Show all posts

icesheep Posted 2013-11-1 02:37
回复  icesheep


噗...积分变量和上下限变量一样......经典错误啊....
战巡 发表于 2013-11-1 01:23

    换个变量这种事自行脑补。。。

Mobile version|Discuz Math Forum

2025-6-5 18:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit