Forgot password
 Register account
View 2314|Reply 9

[函数] 多变量最值

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2018-10-17 12:29 |Read mode
Last edited by 敬畏数学 2018-10-17 13:00函数$f(x)=3x+a$与函数$g(x)=3x+2a$在区间(b,c)上均有零点,则$\frac{a^2+2ab+2ac+4bc}{b^2-2bc+c^2} $的最小值------。

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2018-10-19 08:26
高手有解答吗?

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2018-10-19 09:40
Last edited by 游客 2018-10-19 11:58 未命名.PNG
未命名.PNG

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2018-10-19 12:17
回复 3# 游客
高手,此题没有条件了。谢谢!

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2018-10-22 14:49
回复 3# 游客
最后答案?

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2018-10-22 15:33
当a+b+c=0时,达到最小值-1.

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2018-10-23 14:05
Last edited by 敬畏数学 2018-10-23 14:20回复 6# 游客
,当a不为0时,mn<0,可以得最小值为-1.当a为0时,bc<0,最小值也为-1。取等均满足a+b+c=0.

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2018-10-23 23:20
这不是配方吗?
$\dfrac{a^2+2ab+2ac+4bc}{b^2-2bc+c^2}+1=\dfrac{a^2+b^2+c^2+2ab+2ac+2bc}{(b-c)^2}=\dfrac{(a+b+c)^2}{(b-c)^2}\geqslant0
$,
有零点的条件大约表示$a+b+c=0$能取到吧?

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2018-10-23 23:30
回复 8# 其妙

哈!幸亏我觉得题目不美观就没去解,不然就要被坑了

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-10-24 14:14
回复 8# 其妙


擦,我转化也是与3#同,只是觉得,这家伙怎么少b^2,c^2呢,不对称,你这么一搞,都有了。

你不把过程写完?你的a,b,c与游客的a,b,c意思不同。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:34 GMT+8

Powered by Discuz!

Processed in 0.014202 seconds, 28 queries