Forgot password
 Register account
original poster: 2009

[不等式] 一个群里的竞赛不等式(2a+5b+10c=abc求a+b+c最小)

[Copy link]

765

Threads

4674

Posts

27

Reputation

Show all posts

isee posted 2025-8-7 11:13
Last edited by isee 2025-8-7 11:35
kuing 发表于 2018-12-8 14:48
回复 8# 其妙

计爷那配方至少比他的《代数不等式》里的那些容易破解得多,给链接里第三题也配一个:
链接里第三题:
正实数 a,b,c 满足 a+2b+3c=abc,求 5a+22b+c 最小值.

类似的,亦有
\begin{align*}&\quad\,\left(10\cdot\frac a2+11\cdot 2b+3\cdot \frac c3\right)\sqrt{2\cdot \frac a2+1\cdot 2b+9\cdot \frac c3}\\[1em]&\geqslant 24\left[\left(\frac a2\right)^{10}\left(2b\right)^{11}\left(\frac c3\right)^3\right]^{\frac1{24}}\sqrt{12\left[\left(\frac a2\right)^2\left(2b\right)^1\left(\frac c3\right)^9\right]^{\frac1{12}}}\\[1em]&=48\sqrt{abc},\end{align*}
当且仅当 $(a,b,c)=(4,1,6)$ 时取得等号.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-8-7 21:33 GMT+8

Powered by Discuz!

Processed in 0.012459 seconds, 21 queries