|
isee
posted 2025-8-7 11:13
Last edited by isee 2025-8-7 11:35链接里第三题:
正实数 a,b,c 满足 a+2b+3c=abc,求 5a+22b+c 最小值.
类似的,亦有
\begin{align*}&\quad\,\left(10\cdot\frac a2+11\cdot 2b+3\cdot \frac c3\right)\sqrt{2\cdot \frac a2+1\cdot 2b+9\cdot \frac c3}\\[1em]&\geqslant 24\left[\left(\frac a2\right)^{10}\left(2b\right)^{11}\left(\frac c3\right)^3\right]^{\frac1{24}}\sqrt{12\left[\left(\frac a2\right)^2\left(2b\right)^1\left(\frac c3\right)^9\right]^{\frac1{12}}}\\[1em]&=48\sqrt{abc},\end{align*}
当且仅当 $(a,b,c)=(4,1,6)$ 时取得等号. |
|