Forgot password
 Register account
View 2083|Reply 6

[函数] 这两个性质如何证明

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2018-10-25 17:46 |Read mode
这两个性质如何证明:(由图象是很容易理解,但如何严格证明?)
设函数$y=f(x)的图象关于直线x=m对称:$
(1)若函数$(-\infty ,m]$单调递增,在$[m,+\infty )$上单调递减,则$|x_1-m|<|x_2-m| \liff\riff f(x_1)>f(x_2)$;
(2)若函数$(-\infty ,m]$单调递减,在$[m,+\infty )$上单调递增,则$|x_1-m|<|x_2-m| \liff\riff f(x_1)<f(x_2)$。
哎,等价于这个符号我打不出来。。。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-10-25 18:17
Last edited by isee 2018-10-25 18:41回复 1# lemondian

等价符号 \iff

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-10-25 18:49
回复 2# isee

会用我自定义的 \liff 和 \riff 却不会用自带的 \iff ……也算是难得……

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-10-25 18:50
回复 3# kuing

所以都怪你,哈哈哈

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2018-10-25 19:04
回复 1# lemondian

只证第一个。
当$x_1, x_2 \le m$时,相当于证明$m-x_1 < m-x_2 \iff f(x_1)>f(x_2)$,因为在这区间里单调递增,由定义可知结论正确。
当$x_1, x_2 \ge m$时同理结论正确。
当$x_1 \le m, x_2 \ge m$时,相当于证明$m-x_1 < x_2-m \iff f(x_1)>f(x_2)$。设$x_2$关于$m$的对称点为$x_2'$,则$x_1, x_2' < m, x_2-m=m-x_2', f(x_2)=f(x_2')$,于是只要证明$m-x_1 < m-x_2' \iff f(x_1) > f(x_2')$,再次由单调的定义可知结论正确。
当$x_1 \ge m, x_2 \le m$时,同理可知结论正确。

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2018-10-25 23:40
未命名.PNG

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2018-10-26 08:55
谢谢各位。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:10 GMT+8

Powered by Discuz!

Processed in 0.014655 seconds, 26 queries