Forgot password?
 Register account
View 1883|Reply 6

[数列] 数列前10项和范围问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-11-15 09:33 |Read mode
Last edited by 敬畏数学 2018-11-27 22:06数列$a_n$的各项均小于1,a$_1=\frac{1}{2}$,$a_{n+1}^2-2a_{n+1}=a_n^2-a_n$,则前10项和$s_{10}\in$_____.
A.$(0,\frac{1}{2} ), B.(\frac{1}{2},\frac{3}{4} ), c.(\frac{3}{4},1), D.(1,2)$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-11-15 12:06
明显是错题,首项给定了,后面的项虽然不唯一,但个数也是有限的,比如 a2 最多两个,a3 最多四个,如此类推,那么 s10 也是有限个,它的取值范围不可能是个连续的区间。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2018-11-15 12:30
回复 2# kuing
应该是问:前10项和属于——?

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2018-11-17 16:46
Last edited by realnumber 2018-11-17 17:00用二次方程的求根公式
得到$a_{n+1}=1-\sqrt{a_n^2-a_n+1}$,可以证明$\frac{a_{n+1}}{a_n}<0.5$
用几何画板算了下$S_{10}$很接近0.74957
猜测也许是$S_n$的极限值

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2018-11-21 13:24
此题有解答吗?高手。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2018-11-26 19:26
回复 5# 敬畏数学


    4楼猜是可以修改成难看的办法,多保留几项,放缩等比时,让公比尽可能小

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2018-11-27 19:48
$  a_{n+1}^2-2a_{n+1}= a_n^2-a_n\Longrightarrow\sum_{k=1}^9( a_{k+1}^2-a_{k}^2)=\sum_{k=1}^9( a_{k+1}-a_k)+ \sum_{k=1}^9a_{k+1}\Longrightarrow a_{10}^2-a_{1}^2=a_{10}-a_{1}+(S_{10}-a_{1})\Longrightarrow S_{10}=\frac{1}{2}+(a_{10}-\frac{1}{2})^2$,$a_{n+1}^2-a_{n}^2=2a_{n+1}-2a_{n}+a_{n}\Longrightarrow (a_{n+1}-a_{n})(a_{n+1}-a_{n}-2)=a_{n},a_{n}>0\Longrightarrow a_{n+1}<a_{n}\Longrightarrow 0<a_{10}<\frac{1}{2} \Longrightarrow S_{10}\in (\frac{1}{2},\frac{3}{4})$

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit