Forgot password
 Register account
View 1523|Reply 5

[数论] 若 $4^n+2^n+1$ 为素数,则 $n$ 为 3 的方幂.

[Copy link]

21

Threads

23

Posts

0

Reputation

Show all posts

chudengshuxue posted 2018-11-26 14:51 |Read mode
Last edited by hbghlyj 2025-3-19 17:37若 $4^n+2^n+1$ 为素数,则 $n$ 为 3 的方幂.

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2018-11-26 19:21
用程序检查了下n=1~31,当这个数为素数时,n=3,9
n=27不是素数,可以分解为2593*71119*97685839,

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2018-11-27 20:57
Last edited by hbghlyj 2025-3-19 17:37$\text{設 } k=v_3(n), n=3^k (3q+r), r=1,2$

$(2^{3^k}-1)(4^n+2^n+1)\equiv
(2^{3^k}-1)(4^{3^k(3q+r)}+2^{3^k(3q+r)}+1)\equiv
(2^{3^k}-1)(4^{3^k r}+2^{3^k r}+1)$

$\equiv \begin{cases}
(2^{3^k}-1)(4^{3^k}+2^{3^k}+1)\equiv 2^{3^k 3}-1
\equiv 0\pmod{8^{3^k}-1}\\
(2^{3^k}-1)(4^{3^k 2}+2^{3^k 2}+1)
\equiv 2^{3^k 5}+2^{3^k 3}+2^{3^k}-2^{3^k 4}-2^{3^k 2}-1
\equiv 0\pmod{8^{3^k}-1}\end{cases}$

$8^{3^k}-1|(2^{3^k}-1)(4^n+2^n+1)
\Rightarrow 4^{3^k}+2^{3^k}+1|4^n+2^n+1$

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2018-11-27 21:26
Last edited by hbghlyj 2025-3-19 17:37$k=v_p(n),n=p^k(pq+r),r\neq 0$

$\displaystyle (a^{p^k}-1)\sum_{m=0}^{p-1} a^{nm}
\equiv (a^{p^k}-1)\sum_{m=0}^{p-1} a^{p^k rm}
\equiv (a^{p^k}-1)\sum_{m=0}^{p-1} a^{p^k m}\equiv 0
\pmod{a^{p^{k+1}}-1}$

$\displaystyle \sum_{m=0}^{p-1} a^{p^k m}|\sum_{m=0}^{p-1} a^{nm}$

21

Threads

23

Posts

0

Reputation

Show all posts

original poster chudengshuxue posted 2018-11-29 22:07
这是啥意思啊?

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-11-29 23:13
回复 3# tommywong


tommywong 也太逗了,楼主直接图片,你直接公式代码。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:21 GMT+8

Powered by Discuz!

Processed in 0.013330 seconds, 28 queries