|
Last edited by hbghlyj 2025-3-19 17:37$\text{設 } k=v_3(n), n=3^k (3q+r), r=1,2$
$(2^{3^k}-1)(4^n+2^n+1)\equiv
(2^{3^k}-1)(4^{3^k(3q+r)}+2^{3^k(3q+r)}+1)\equiv
(2^{3^k}-1)(4^{3^k r}+2^{3^k r}+1)$
$\equiv \begin{cases}
(2^{3^k}-1)(4^{3^k}+2^{3^k}+1)\equiv 2^{3^k 3}-1
\equiv 0\pmod{8^{3^k}-1}\\
(2^{3^k}-1)(4^{3^k 2}+2^{3^k 2}+1)
\equiv 2^{3^k 5}+2^{3^k 3}+2^{3^k}-2^{3^k 4}-2^{3^k 2}-1
\equiv 0\pmod{8^{3^k}-1}\end{cases}$
$8^{3^k}-1|(2^{3^k}-1)(4^n+2^n+1)
\Rightarrow 4^{3^k}+2^{3^k}+1|4^n+2^n+1$ |
|