Forgot password?
 Register account
View 1420|Reply 2

[数列] 数列构造

[Copy link]

9

Threads

17

Posts

134

Credits

Credits
134

Show all posts

大一新生 Posted 2018-11-26 20:51 |Read mode
给定一个元素为$+1$或$-1$的有穷数列$\{a_n\}_0^n$,将其扩展为一个无穷数列$\{b_n^0\}_{-\infty}^{+\infty}$,数列$\{b_n^0\}$满足:
\begin{cases}b_i^0=a_i,&0\leqslant i<n,\\b_i^0=b_{i-n}^0,&i\geqslant n,\\b_i^0=b_{i+n}^0,&i<0.\end{cases}
定义无穷数列$\{b_n^k\}_{-\infty}^{+\infty}(k\geqslant1)$满足:
\begin{cases}b_i^k=b_{i+1}^{k-1},&b_i^{k-1}=+1,\\b_i^k=b_{i-1}^{k-1},&b_i^{k-1}=-1.\end{cases}
设函数$F(k,l,r)$表示数列$\{b_n^k\}$的连续子列$b_l^k,b_{l+1}^k,b_{l+2}^k,\cdots,b_{r-1}^k,b_r^k$中$+1$元素的个数.

题:对给定的数列$\{a_n\}_0^7$,$a_0=-1,a_1=-1,a_2=+1,a_3=-1,a_4=+1,a_5=+1,a_6=-1,a_7=+1$,求$F(123,-456,789)$与$F(1234,-5678,9012)$.

9

Threads

17

Posts

134

Credits

Credits
134

Show all posts

 Author| 大一新生 Posted 2018-11-26 22:20
答案分别是623和7345,不知道这道题的规律在哪儿

9

Threads

17

Posts

134

Credits

Credits
134

Show all posts

 Author| 大一新生 Posted 2018-11-27 10:44
这道题里bn数列的上标应该和下标一样,只是标号,而不是次方

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit